next

Click on a word to bring up parses, dictionary entries, and frequency statistics



σημεῖόν ἐστιν, οὗ μέρος οὐθέν.


γραμμὴ δὲ μῆκος ἀπλατές.


γραμμῆς δὲ πέρατα σημεῖα.


εὐθεῖα γραμμή ἐστιν, ἥτις ἐξ ἴσου τοῖς ἐφ᾽ ἑαυτῆς σημείοις κεῖται.


ἐπιφάνεια δέ ἐστιν, μῆκος καὶ πλάτος μόνον ἔχει.


ἐπιφανείας δὲ πέρατα γραμμαί.


ἐπίπεδος ἐπιφάνειά ἐστιν, ἥτις ἐξ ἴσου ταῖς ἐφ᾽ ἑαυτῆς εὐθείαις κεῖται.


ἐπίπεδος δὲ γωνία ἐστὶν ἐν ἐπιπέδῳ δύο γραμμῶν ἁπτομένων ἀλλήλων καὶ μὴ ἐπ᾽ εὐθείας κειμένων πρὸς ἀλλήλας τῶν γραμμῶν κλίσις.


ὅταν δὲ αἱ περιέχουσαι τὴν γωνίαν γραμμαὶ εὐθεῖαι ὦσιν, εὐθύγραμμος καλεῖται γωνία.


ὅταν δὲ εὐθεῖα ἐπ᾽ εὐθεῖαν σταθεῖσα τὰς ἐφεξῆς γωνίας ἴσας ἀλλήλαις ποιῇ, ὀρθὴ ἑκατέρα τῶν ἴσων γωνιῶν ἐστι, καὶ ἐφεστηκυῖα εὐθεῖα κάθετος καλεῖται, ἐφ᾽ ἣν ἐφέστηκεν.


ἀμβλεῖα γωνία ἐστὶν μείζων ὀρθῆς.


ὀξεῖα δὲ ἐλάσσων ὀρθῆς.


ὅρος ἐστίν, τινός ἐστι πέρας.


σχῆμά ἐστι τὸ ὑπό τινος τινων ὅρων περιεχόμενον.


κύκλος ἐστὶ σχῆμα ἐπίπεδον ὑπὸ μιᾶς γραμμῆς περιεχόμενον καλεῖται περιφέρεια, πρὸς ἣν ἀφ᾽ ἑνὸς σημείου τῶν ἐντὸς τοῦ σχήματος κειμένων πᾶσαι αἱ προσπίπτουσαι εὐθεῖαι πρὸς τὴν τοῦ κύκλου περιφέρειαν
5ἴσαι ἀλλήλαις εἰσίν.


κέντρον δὲ τοῦ κύκλου τὸ σημεῖον καλεῖται.


διάμετρος δὲ τοῦ κύκλου ἐστὶν εὐθεῖά τις διὰ τοῦ κέντρου ἠγμένη καὶ περατουμένη ἐφ᾽ ἑκάτερα τὰ μέρη ὑπὸ τῆς τοῦ κύκλου περιφερείας, ἥτις καὶ δίχα τέμνει τὸν κύκλον.


ἡμικύκλιον δέ ἐστι τὸ περιεχόμενον σχῆμα ὑπό τε τῆς διαμέτρου καὶ τῆς ἀπολαμβανομένης ὑπ᾽ αὐτῆς περιφερείας. κέντρον δὲ τοῦ ἡμικυκλίου τὸ αὐτό, καὶ τοῦ κύκλου ἐστίν.


σχήματα εὐθύγραμμά ἐστι τὰ ὑπὸ εὐθειῶν περιεχόμενα, τρίπλευρα μὲν τὰ ὑπὸ τριῶν, τετράπλευρα δὲ τὰ ὑπὸ τεσσάρων, πολύπλευρα δὲ τὰ ὑπὸ πλειόνων τεσσάρων εὐθειῶν περιεχόμενα.


τῶν δὲ τριπλεύρων σχημάτων ἰσόπλευρον μὲν τρίγωνόν ἐστι τὸ τὰς τρεῖς ἴσας ἔχον πλευράς, ἰσοσκελὲς δὲ τὸ τὰς δύο μόνας ἴσας ἔχον πλευράς, σκαληνὸν δὲ τὸ τὰς τρεῖς ἀνίσους ἔχον πλευράς.


ἔτι δὲ τῶν τριπλεύρων σχημάτων ὀρθογώνιον μὲν τρίγωνόν ἐστι τὸ ἔχον ὀρθὴν γωνίαν, ἀμβλυγώνιον δὲ τὸ ἔχον ἀμβλεῖαν γωνίαν, ὀξυγώνιον δὲ τὸ τὰς τρεῖς ὀξείας ἔχον γωνίας.


τῶν δὲ τετραπλεύρων σχημάτων τετράγωνον μέν ἐστιν, ἰσόπλευρόν τέ ἐστι καὶ ὀρθογώνιον, ἑτερόμηκες δέ, ὀρθογώνιον μέν, οὐκ ἰσόπλευρον δέ, ῥόμβος δέ, ἰσόπλευρον μέν, οὐκ ὀρθογώνιον δέ, ῥομβοειδὲς δὲ τὸ τὰς
5ἀπεναντίον πλευράς τε καὶ γωνίας ἴσας ἀλλήλαις ἔχον, οὔτε ἰσόπλευρόν ἐστιν οὔτε ὀρθογώνιον: τὰ δὲ παρὰ ταῦτα τετράπλευρα τραπέζια καλείσθω.


παράλληλοί εἰσιν εὐθεῖαι, αἵτινες ἐν τῷ αὐτῷ ἐπιπέδῳ οὖσαι καὶ ἐκβαλλόμεναι εἰς ἄπειρον ἐφ᾽ ἑκάτερα τὰ μέρη ἐπὶ μηδέτερα συμπίπτουσιν ἀλλήλαις.



Ἠιτήσθω ἀπὸ παντὸς σημείου ἐπὶ πᾶν σημεῖον εὐθεῖαν γραμμὴν ἀγαγεῖν.


καὶ πεπερασμένην εὐθεῖαν κατὰ τὸ συνεχὲς ἐπ᾽ εὐθείας ἐκβαλεῖν.


καὶ παντὶ κέντρῳ καὶ διαστήματι κύκλον γράφεσθαι.


καὶ πάσας τὰς ὀρθὰς γωνίας ἴσας ἀλλήλαις εἶναι.


καὶ ἐὰν εἰς δύο εὐθείας εὐθεῖα ἐμπίπτουσα τὰς ἐντὸς καὶ ἐπὶ τὰ αὐτὰ μέρη γωνίας δύο ὀρθῶν ἐλάσσονας ποιῇ, ἐκβαλλομένας τὰς δύο εὐθείας ἐπ᾽ ἄπειρον συμπίπτειν, ἐφ᾽ μέρη εἰσὶν αἱ τῶν δύο ὀρθῶν ἐλάσσονες.



τὰ τῷ αὐτῷ ἴσα καὶ ἀλλήλοις ἐστὶν ἴσα.


καὶ ἐὰν ἴσοις ἴσα προστεθῇ, τὰ ὅλα ἐστὶν ἴσα.


καὶ ἐὰν ἀπὸ ἴσων ἴσα ἀφαιρεθῇ, τὰ καταλειπόμενά ἐστιν ἴσα.


καὶ ἐὰν ἀνίσοις ἴσα προστεθῇ, τὰ ὅλα ἐστὶν ἄνισα.


καὶ τὰ τοῦ αὐτοῦ διπλάσια ἴσα ἀλλήλοις ἐστίν.


καὶ τὰ τοῦ αὐτοῦ ἡμίση ἴσα ἀλλήλοις ἐστίν.


καὶ τὰ ἐφαρμόζοντα ἐπ᾽ ἄλληλα ἴσα ἀλλήλοις ἐστίν.


καὶ τὸ ὅλον τοῦ μέρους μεῖζον ἐστιν.


καὶ δύο εὐθεῖαι χωρίον οὐ περιέχουσιν.



ἐπὶ τῆς δοθείσης εὐθείας πεπερασμένης τρίγωνον ἰσόπλευρον συστήσασθαι.

ἔστω δοθεῖσα εὐθεῖα πεπερασμένη ΑΒ.

δεῖ δὴ ἐπὶ τῆς ΑΒ εὐθείας τρίγωνον ἰσόπλευρον συστήσασθαι.
5

κέντρῳ μὲν τῷ Α διαστήματι δὲ τῷ ΑΒ κύκλος γεγράφθω ΒΓΔ, καὶ πάλιν κέντρῳ μὲν τῷ Β διαστήματι δὲ τῷ ΒΑ κύκλος γεγράφθω ΑΓΕ, καὶ ἀπὸ τοῦ Γ σημείου, καθ᾽ τέμνουσιν ἀλλήλους
10οἱ κύκλοι, ἐπὶ τὰ Α, Β σημεῖα ἐπεζεύχθωσαν εὐθεῖαι αἱ ΓΑ, ΓΒ.

καὶ ἐπεὶ τὸ Α σημεῖον κέντρον ἐστὶ τοῦ ΓΔΒ κύκλου,
15ἴση ἐστὶν ΑΓ τῇ ΑΒ: πάλιν, ἐπεὶ τὸ Β σημεῖον κέντρον ἐστὶ τοῦ ΓΑΕ κύκλου, ἴση ἐστὶν ΒΓ τῇ ΒΑ. ἐδείχθη δὲ καὶ ΓΑ τῇ ΑΒ ἴση: ἑκατέρα ἄρα τῶν ΓΑ, ΓΒ τῇ ΑΒ ἐστὶν ἴση. τὰ δὲ τῷ αὐτῷ ἴσα καὶ ἀλλήλοις ἐστὶν ἴσα: καὶ
20ΓΑ ἄρα τῇ ΓΒ ἐστὶν ἴση: αἱ τρεῖς ἄρα αἱ ΓΑ, ΑΒ, ΒΓ ἴσαι ἀλλήλαις εἰσίν.

ἰσόπλευρον ἄρα ἐστὶ τὸ ΑΒΓ τρίγωνον, καὶ συνέσταται ἐπὶ τῆς δοθείσης εὐθείας πεπερασμένης τῆς ΑΒ.

Ἐπὶ τῆς δοθείσης ἄρα εὐθείας πεπερασμένης τρίγωνον
25ἰσόπλευρον συνέσταται: ὅπερ ἔδει ποιῆσαι.


πρὸς τῷ δοθέντι σημείῳ τῇ δοθείσῃ εὐθείᾳ ἴσην εὐθεῖαν θέσθαι.

ἔστω τὸ μὲν δοθὲν σημεῖον τὸ Α, δὲ δοθεῖσα εὐθεῖα ΒΓ: δεῖ δὴ πρὸς τῷ Α σημείῳ τῇ δοθείσῃ εὐθείᾳ τῇ ΒΓ
5ἴσην εὐθεῖαν θέσθαι.

ἐπεζεύχθω γὰρ ἀπὸ τοῦ Α σημείου ἐπὶ τὸ Β σημεῖον εὐθεῖα ΑΒ, καὶ συνεστάτω ἐπ᾽ αὐτῆς τρίγωνον ἰσόπλευρον τὸ ΔΑΒ, καὶ ἐκβεβλήσθωσαν ἐπ᾽ εὐθείας ταῖς ΔΑ, ΔΒ εὐθεῖαι αἱ ΑΕ, ΒΖ, καὶ κέντρῳ μὲν τῷ Β διαστήματι
10δὲ τῷ ΒΓ κύκλος γεγράφθω ΓΗΘ, καὶ πάλιν κέντρῳ τῷ Δ καὶ διαστήματι τῷ ΔΗ κύκλος γεγράφθω ΗΚΛ.

ἐπεὶ οὖν τὸ Β σημεῖον κέντρον ἐστὶ τοῦ ΓΗΘ κύκλου, ἴση ἐστὶν ΒΓ τῇ ΒΗ. πάλιν, ἐπεὶ
15τὸ Δ σημεῖον κέντρον ἐστὶ τοῦ ΚΛΗ κύκλου, ἴση ἐστὶν ΔΛ τῇ ΔΗ, ὧν ΔΑ τῇ ΔΒ ἴση ἐστίν. λοιπὴ ἄρα ΑΛ λοιπῇ τῇ ΒΗ ἐστὶν ἴση.
20ἐδείχθη δὲ καὶ ΒΓ τῇ ΒΗ ἴση: ἑκατέρα ἄρα τῶν ΑΛ, ΒΓ τῇ ΒΗ ἐστὶν ἴση. τὰ δὲ τῷ αὐτῷ ἴσα καὶ ἀλλήλοις ἐστὶν ἴσα: καὶ ΑΛ ἄρα τῇ ΒΓ ἐστὶν ἴση.

πρὸς ἄρα τῷ δοθέντι σημείῳ τῷ Α τῇ δοθείσῃ εὐθείᾳ
25τῇ ΒΓ ἴση εὐθεῖα κεῖται ΑΛ: ὅπερ ἔδει ποιῆσαι.


δύο δοθεισῶν εὐθειῶν ἀνίσων ἀπὸ τῆς μείζονος τῇ ἐλάσσονι ἴσην εὐθεῖαν ἀφελεῖν.

ἔστωσαν αἱ δοθεῖσαι δύο εὐθεῖαι ἄνισοι αἱ ΑΒ, Γ, ὧν μείζων ἔστω
5ΑΒ: δεῖ δὴ ἀπὸ τῆς μείζονος τῆς ΑΒ τῇ ἐλάσσονι τῇ Γ ἴσην εὐθεῖαν ἀφελεῖν.

κείσθω πρὸς τῷ Α σημείῳ τῇ Γ εὐθείᾳ ἴση ΑΔ: καὶ κέντρῳ μὲν τῷ Α διαστήματι δὲ τῷ ΑΔ κύκλος γεγράφθω
10 ΔΕΖ.

καὶ ἐπεὶ τὸ Α σημεῖον κέντρον ἐστὶ τοῦ ΔΕΖ κύκλου, ἴση ἐστὶν ΑΕ τῇ ΑΔ: ἀλλὰ καὶ Γ τῇ ΑΔ ἐστιν ἴση. ἑκατέρα ἄρα τῶν ΑΕ, Γ τῇ ΑΔ ἐστιν ἴση: ὥστε καὶ ΑΕ τῇ Γ ἐστιν ἴση.
15

δύο ἄρα δοθεισῶν εὐθειῶν ἀνίσων τῶν ΑΒ, Γ ἀπὸ τῆς μείζονος τῆς ΑΒ τῇ ἐλάσσονι τῇ Γ ἴση ἀφῄρηται ΑΕ: ὅπερ ἔδει ποιῆσαι.


ἐὰν δύο τρίγωνα τὰς δύο πλευρὰς ταῖς δυσὶ πλευραῖς ἴσας ἔχῃ ἑκατέραν ἑκατέρᾳ καὶ τὴν γωνίαν τῇ γωνίᾳ ἴσην ἔχῃ τὴν ὑπὸ τῶν ἴσων εὐθειῶν περιεχομένην, καὶ τὴν βάσιν τῇ βάσει ἴσην ἕξει, καὶ τὸ τρίγωνον τῷ τριγώνῳ ἴσον
5ἔσται, καὶ αἱ λοιπαὶ γωνίαι ταῖς λοιπαῖς γωνίαις ἴσαι ἔσονται ἑκατέρα ἑκατέρᾳ, ὑφ᾽ ἃς αἱ ἴσαι πλευραὶ ὑποτείνουσιν.

ἔστω δύο τρίγωνα τὰ ΑΒΓ, ΔΕΖ
5τὰς δύο πλευρὰς τὰς ΑΒ, ΑΓ ταῖς δυσὶ πλευραῖς ταῖς ΔΕ, ΔΖ ἴσας ἔχοντα
10ἑκατέραν ἑκατέρᾳ τὴν μὲν ΑΒ τῇ ΔΕ τὴν δὲ ΑΓ τῇ ΔΖ καὶ γωνίαν τὴν ὑπὸ ΒΑΓ γωνίᾳ τῇ ὑπὸ ΕΔΖ ἴσην. λέγω, ὅτι καὶ βάσις ΒΓ βάσει τῇ ΕΖ ἴση ἐστίν, καὶ τὸ ΑΒΓ τρίγωνον τῷ ΔΕΖ
15τριγώνῳ ἴσον ἔσται, καὶ αἱ λοιπαὶ γωνίαι ταῖς λοιπαῖς γωνίαις ἴσαι ἔσονται ἑκατέρα ἑκατέρᾳ, ὑφ᾽ ἃς αἱ ἴσαι πλευραὶ ὑποτείνουσιν, μὲν ὑπὸ ΑΒΓ τῇ ὑπὸ ΔΕΖ, δὲ ὑπὸ ΑΓΒ τῇ ὑπὸ ΔΖΕ.
20

Ἐφαρμοζομένου γὰρ τοῦ ΑΒΓ τριγώνου ἐπὶ τὸ ΔΕΖ τρίγωνον καὶ τιθεμένου τοῦ μὲν Α σημείου ἐπὶ τὸ Δ σημεῖον τῆς δὲ ΑΒ εὐθείας ἐπὶ τὴν ΔΕ, ἐφαρμόσει καὶ τὸ Β σημεῖον ἐπὶ τὸ Ε διὰ τὸ ἴσην εἶναι τὴν ΑΒ τῇ ΔΕ: ἐφαρμοσάσης δὴ τῆς ΑΒ ἐπὶ τὴν ΔΕ ἐφαρμόσει καὶ ΑΓ
25εὐθεῖα ἐπὶ τὴν ΔΖ διὰ τὸ ἴσην εἶναι τὴν ὑπὸ ΒΑΓ γωνίαν τῇ ὑπὸ ΕΔΖ: ὥστε καὶ τὸ Γ σημεῖον ἐπὶ τὸ Ζ σημεῖον ἐφαρμόσει διὰ τὸ ἴσην πάλιν εἶναι τὴν ΑΓ τῇ ΔΖ. ἀλλὰ μὴν καὶ τὸ Β ἐπὶ τὸ Ε ἐφηρμόκει: ὥστε βάσις ΒΓ ἐπὶ βάσιν τὴν ΕΖ ἐφαρμόσει. εἰ γὰρ τοῦ μὲν Β ἐπὶ τὸ Ε
30ἐφαρμόσαντος τοῦ δὲ Γ ἐπὶ τὸ Ζ ΒΓ βάσις ἐπὶ τὴν ΕΖ οὐκ ἐφαρμόσει, δύο εὐθεῖαι χωρίον περιέξουσιν: ὅπερ ἐστὶν ἀδύνατον. ἐφαρμόσει ἄρα ΒΓ βάσις ἐπὶ τὴν ΕΖ καὶ ἴση αὐτῇ ἔσται: ὥστε καὶ ὅλον τὸ ΑΒΓ τρίγωνον ἐπὶ ὅλον τὸ ΔΕΖ τρίγωνον ἐφαρμόσει καὶ ἴσον αὐτῷ ἔσται,
35καὶ αἱ λοιπαὶ γωνίαι ἐπὶ τὰς λοιπὰς γωνίας ἐφαρμόσουσι καὶ ἴσαι αὐταῖς ἔσονται, μὲν ὑπὸ ΑΒΓ τῇ ὑπὸ ΔΕΖ δὲ ὑπὸ ΑΓΒ τῇ ὑπὸ ΔΖΕ.

ἐὰν ἄρα δύο τρίγωνα τὰς δύο πλευρὰς ταῖς δύο πλευραῖς ἴσας ἔχῃ ἑκατέραν ἑκατέρᾳ καὶ τὴν γωνίαν τῇ γωνίᾳ
40ἴσην ἔχῃ τὴν ὑπὸ τῶν ἴσων εὐθειῶν περιεχομένην, καὶ τὴν βάσιν τῇ βάσει ἴσην ἕξει, καὶ τὸ τρίγωνον τῷ τριγώνῳ ἴσον ἔσται, καὶ αἱ λοιπαὶ γωνίαι ταῖς λοιπαῖς γωνίαις ἴσαι ἔσονται ἑκατέρα ἑκατέρᾳ, ὑφ᾽ ἃς αἱ ἴσαι πλευραὶ ὑποτείνουσιν: ὅπερ ἔδει δεῖξαι.


τῶν ἰσοσκελῶν τριγώνων αἱ πρὸς τῇ βάσει γωνίαι ἴσαι ἀλλήλαις εἰσίν, καὶ προσεκβληθεισῶν τῶν ἴσων εὐθειῶν αἱ ὑπὸ τὴν βάσιν γωνίαι ἴσαι ἀλλήλαις ἔσονται.

ἔστω τρίγωνον ἰσοσκελὲς τὸ ΑΒΓ ἴσην ἔχον τὴν ΑΒ
5πλευρὰν τῇ ΑΓ πλευρᾷ, καὶ προσεκβεβλήσθωσαν ἐπ᾽ εὐθείας ταῖς ΑΒ, ΑΓ εὐθεῖαι αἱ ΒΔ, ΓΕ: λέγω, ὅτι μὲν ὑπὸ ΑΒΓ γωνία τῇ ὑπὸ ΑΓΒ ἴση ἐστίν, δὲ ὑπὸ ΓΒΔ τῇ ὑπὸ ΒΓΕ.
10

εἰλήφθω γὰρ ἐπὶ τῆς ΒΔ τυχὸν σημεῖον τὸ Ζ, καὶ ἀφῃρήσθω ἀπὸ τῆς μείζονος τῆς ΑΕ τῇ ἐλάσσονι τῇ ΑΖ ἴση ΑΗ, καὶ ἐπεζεύχθωσαν αἱ ΖΓ, ΗΒ εὐθεῖαι.
15

ἐπεὶ οὖν ἴση ἐστὶν μὲν ΑΖ τῇ ΑΗ δὲ ΑΒ τῇ ΑΓ, δύο δὴ αἱ ΖΑ, ΑΓ δυσὶ ταῖς ΗΑ, ΑΒ ἴσαι εἰσὶν ἑκατέρα ἑκατέρᾳ: καὶ γωνίαν κοινὴν περιέχουσι τὴν ὑπὸ ΖΑΗ: βάσις ἄρα ΖΓ βάσει τῇ ΗΒ ἴση ἐστίν, καὶ τὸ ΑΖΓ τρίγωνον τῷ ΑΗΒ τριγώνῳ ἴσον ἔσται, καὶ αἱ λοιπαὶ γωνίαι
20ταῖς λοιπαῖς γωνίαις ἴσαι ἔσονται ἑκατέρα ἑκατέρᾳ, ὑφ᾽ ἃς αἱ ἴσαι πλευραὶ ὑποτείνουσιν, μὲν ὑπὸ ΑΓΖ τῇ ὑπὸ ΑΒΗ, δὲ ὑπὸ ΑΖΓ τῇ ὑπὸ ΑΗΒ. καὶ ἐπεὶ ὅλη ΑΖ ὅλῃ τῇ ΑΗ ἐστιν ἴση, ὧν ΑΒ τῇ ΑΓ ἐστιν ἴση, λοιπὴ ἄρα ΒΖ λοιπῇ τῇ ΓΗ ἐστιν ἴση. ἐδείχθη
25δὲ καὶ ΖΓ τῇ ΗΒ ἴση: δύο δὴ αἱ ΒΖ, ΖΓ δυσὶ ταῖς ΓΗ, ΗΒ ἴσαι εἰσὶν ἑκατέρα ἑκατέρᾳ: καὶ γωνία ὑπὸ ΒΖΓ γωνίᾳ τῇ ὑπὸ ΓΗΒ ἴση, καὶ βάσις αὐτῶν κοινὴ ΒΓ: καὶ τὸ ΒΖΓ ἄρα τρίγωνον τῷ ΓΗΒ τριγώνῳ ἴσον ἔσται, καὶ αἱ λοιπαὶ γωνίαι ταῖς λοιπαῖς γωνίαις ἴσαι ἔσονται
30ἑκατέρα ἑκατέρᾳ, ὑφ᾽ ἃς αἱ ἴσαι πλευραὶ ὑποτείνουσιν: ἴση ἄρα ἐστὶν μὲν ὑπὸ ΖΒΓ τῇ ὑπὸ ΗΓΒ δὲ ὑπὸ ΒΓΖ τῇ ὑπὸ ΓΒΗ. ἐπεὶ οὖν ὅλη ὑπὸ ΑΒΗ γωνία ὅλῃ τῇ ὑπὸ ΑΓΖ γωνίᾳ ἐδείχθη ἴση, ὧν ὑπὸ ΓΒΗ τῇ ὑπὸ ΒΓΖ ἴση, λοιπὴ ἄρα ὑπὸ ΑΒΓ λοιπῇ τῇ ὑπὸ ΑΓΒ
35ἐστιν ἴση: καί εἰσι πρὸς τῇ βάσει τοῦ ΑΒΓ τριγώνου. ἐδείχθη δὲ καὶ ὑπὸ ΖΒΓ τῇ ὑπὸ ΗΓΒ ἴση: καί εἰσιν ὑπὸ τὴν βάσιν.

τῶν ἄρα ἰσοσκελῶν τριγώνων αἱ πρὸς τῇ βάσει γωνίαι ἴσαι ἀλλήλαις εἰσίν, καὶ προσεκβληθεισῶν τῶν ἴσων
40εὐθειῶν αἱ ὑπὸ τὴν βάσιν γωνίαι ἴσαι ἀλλήλαις ἔσονται: ὅπερ ἔδει δεῖξαι.


ἐὰν τριγώνου αἱ δύο γωνίαι ἴσαι ἀλλήλαις ὦσιν, καὶ αἱ ὑπὸ τὰς ἴσας γωνίαις ὑποτείνουσαι πλευραὶ ἴσαι ἀλλήλαις ἔσονται.

ἔστω τρίγωνον τὸ ΑΒΓ ἴσην ἔχον τὴν ὑπὸ ΑΒΓ γωνίαν
5τῇ ὑπὸ ΑΓΒ γωνίᾳ: λέγω, ὅτι καὶ πλευρὰ ΑΒ πλευρᾷ τῇ ΑΓ ἐστιν ἴση.

εἰ γὰρ ἄνισός ἐστιν ΑΒ τῇ ΑΓ, ἑτέρα αὐτῶν μείζων ἐστίν. ἔστω μείζων ΑΒ, καὶ ἀφῃρήσθω ἀπὸ τῆς μείζονος τῆς ΑΒ
10τῇ ἐλάττονι τῇ ΑΓ ἴση ΔΒ, καὶ ἐπεζεύχθω ΔΓ.

ἐπεὶ οὖν ἴση ἐστὶν ΔΒ τῇ ΑΓ κοινὴ δὲ ΒΓ, δύο δὴ αἱ ΔΒ, ΒΓ δύο ταῖς ΑΓ, ΓΒ ἴσαι εἰσὶν ἑκατέρα ἑκατέρᾳ, καὶ γωνία ὑπὸ ΔΒΓ
15γωνίᾳ τῇ ὑπὸ ΑΓΒ ἐστιν ἴση: βάσις ἄρα ΔΓ βάσει τῇ ΑΒ ἴση ἐστίν, καὶ τὸ ΔΒΓ τρίγωνον τῷ ΑΓΒ τριγώνῳ ἴσον ἔσται, τὸ ἔλασσον τῷ μείζονι: ὅπερ ἄτοπον: οὐκ ἄρα ἄνισός ἐστιν ΑΒ τῇ ΑΓ: ἴση ἄρα.

ἐὰν ἄρα τριγώνου αἱ δύο γωνίαι ἴσαι ἀλλήλαις ὦσιν,
20καὶ αἱ ὑπὸ τὰς ἴσας γωνίας ὑποτείνουσαι πλευραὶ ἴσαι ἀλλήλαις ἔσονται: ὅπερ ἔδει δεῖξαι.


ἐπὶ τῆς αὐτῆς εὐθείας δύο ταῖς αὐταῖς εὐθείαις ἄλλαι δύο εὐθεῖαι ἴσαι ἑκατέρα ἑκατέρᾳ οὐ συσταθήσονται πρὸς ἄλλῳ καὶ ἄλλῳ σημείῳ ἐπὶ τὰ αὐτὰ μέρη τὰ αὐτὰ πέρατα ἔχουσαι ταῖς ἐξ ἀρχῆς εὐθείαις.
5

εἰ γὰρ δυνατόν, ἐπὶ τῆς αὐτῆς εὐθείας τῆς ΑΒ δύο ταῖς αὐταῖς εὐθείαις ταῖς ΑΓ, ΓΒ ἄλλαι δύο εὐθεῖαι αἱ ΑΔ, ΔΒ ἴσαι ἑκατέρα ἑκατέρᾳ συνεστάτωσαν πρὸς ἄλλῳ καὶ ἄλλῳ σημείῳ τῷ τε Γ καὶ Δ ἐπὶ τὰ αὐτὰ μέρη τὰ αὐτὰ πέρατα ἔχουσαι,
10ὥστε ἴσην εἶναι τὴν μὲν ΓΑ τῇ ΔΑ τὸ αὐτὸ πέρας ἔχουσαν αὐτῇ τὸ Α, τὴν δὲ ΓΒ τῇ ΔΒ τὸ αὐτὸ πέρας ἔχουσαν αὐτῇ τὸ Β, καὶ ἐπεζεύχθω ΓΔ.
15

ἐπεὶ οὖν ἴση ἐστὶν ΑΓ τῇ ΑΔ, ἴση ἐστὶ καὶ γωνία ὑπὸ ΑΓΔ τῇ ὑπὸ ΑΔΓ: μείζων ἄρα ὑπὸ ΑΔΓ τῆς ὑπὸ ΔΓΒ: πολλῷ ἄρα ὑπὸ ΓΔΒ μείζων ἐστὶ τῆς ὑπὸ ΔΓΒ. πάλιν ἐπεὶ ἴση ἐστὶν ΓΒ τῇ ΔΒ, ἴση ἐστὶ καὶ γωνία ὑπὸ ΓΔΒ γωνίᾳ τῇ ὑπὸ ΔΓΒ. ἐδείχθη δὲ αὐτῆς
20καὶ πολλῷ μείζων: ὅπερ ἐστὶν ἀδύνατον.

οὐκ ἄρα ἐπὶ τῆς αὐτῆς εὐθείας δύο ταῖς αὐταῖς εὐθείαις ἄλλαι δύο εὐθεῖαι ἴσαι ἑκατέρα ἑκατέρᾳ συσταθήσονται πρὸς ἄλλῳ καὶ ἄλλῳ σημείῳ ἐπὶ τὰ αὐτὰ μέρη τὰ αὐτὰ πέρατα ἔχουσαι ταῖς ἐξ ἀρχῆς εὐθείαις: ὅπερ
25ἔδει δεῖξαι.


ἐὰν δύο τρίγωνα τὰς δύο πλευρὰς ταῖς δύο πλευραῖς ἴσας ἔχῃ ἑκατέραν ἑκατέρα, ἔχῃ δὲ καὶ τὴν βάσιν τῇ βάσει ἴσην, καὶ τὴν γωνίαν τῇ γωνίᾳ ἴσην ἕξει τὴν ὑπὸ τῶν ἴσων εὐθειῶν περιεχομένην.
5

ἔστω δύο τρίγωνα τὰ ΑΒΓ, ΔΕΖ τὰς δύο πλευρὰς τὰς ΑΒ, ΑΓ ταῖς δύο πλευραῖς ταῖς ΔΕ, ΔΖ ἴσας ἔχοντα ἑκατέραν ἑκατέρᾳ, τὴν μὲν ΑΒ τῇ ΔΕ τὴν δὲ ΑΓ τῇ ΔΖ: ἐχέτω δὲ καὶ βάσιν τὴν ΒΓ βάσει
10τῇ ΕΖ ἴσην: λέγω, ὅτι καὶ γωνία ὑπὸ ΒΑΓ γωνίᾳ τῇ ὑπὸ ΕΔΖ ἐστιν ἴση.

Ἐφαρμοζομένου γὰρ τοῦ ΑΒΓ τριγώνου ἐπὶ τὸ ΔΕΖ τρίγωνον
15καὶ τιθεμένου τοῦ μὲν Β σημείου ἐπὶ τὸ Ε σημεῖον
15τῆς δὲ ΒΓ εὐθείας ἐπὶ τὴν ΕΖ ἐφαρμόσει καὶ τὸ Γ σημεῖον ἐπὶ τὸ Ζ διὰ τὸ ἴσην εἶναι τὴν ΒΓ τῇ ΕΖ: ἐφαρμοσάσης δὴ τῆς ΒΓ ἐπὶ τὴν ΕΖ ἐφαρμόσουσι καὶ αἱ ΒΑ, ΓΑ ἐπὶ τὰς ΕΔ, ΔΖ. εἰ γὰρ βάσις μὲν ΒΓ
20ἐπὶ βάσιν τὴν ΕΖ ἐφαρμόσει, αἱ δὲ ΒΑ, ΑΓ πλευραὶ ἐπὶ τὰς ΕΔ, ΔΖ οὐκ ἐφαρμόσουσιν ἀλλὰ παραλλάξουσιν ὡς αἱ ΕΗ, ΗΖ, συσταθήσονται ἐπὶ τῆς αὐτῆς εὐθείας δύο ταῖς αὐταῖς εὐθείαις ἄλλαι δύο εὐθεῖαι ἴσαι ἑκατέρα ἑκατέρᾳ πρὸς ἄλλῳ καὶ ἄλλῳ σημείῳ ἐπὶ
25τὰ αὐτὰ μέρη τὰ αὐτὰ πέρατα ἔχουσαι. οὐ συνίστανται δέ: οὐκ ἄρα ἐφαρμοζομένης τῆς ΒΓ βάσεως ἐπὶ τὴν ΕΖ βάσιν οὐκ ἐφαρμόσουσι καὶ αἱ ΒΑ, ΑΓ πλευραὶ ἐπὶ τὰς ΕΔ, ΔΖ. ἐφαρμόσουσιν ἄρα: ὥστε καὶ γωνία ὑπὸ ΒΑΓ ἐπὶ γωνίαν τὴν ὑπὸ ΕΔΖ ἐφαρμόσει καὶ ἴση αὐτῇ
30ἔσται.

ἐὰν ἄρα δύο τρίγωνα τὰς δύο πλευρὰς ταῖς δύο πλευραῖς ἴσας ἔχῃ ἑκατέραν ἑκατέρᾳ καὶ τὴν βάσιν τῇ βάσει ἴσην ἔχῃ, καὶ τὴν γωνίαν τῇ γωνίᾳ ἴσην ἕξει τὴν ὑπὸ τῶν ἴσων εὐθειῶν περιεχομένην: ὅπερ ἔδει δεῖξαι.


τὴν δοθεῖσαν γωνίαν εὐθύγραμμον δίχα τεμεῖν.

ἔστω δοθεῖσα γωνία εὐθύγραμμος ὑπὸ ΒΑΓ. δεῖ δὴ αὐτὴν δίχα τεμεῖν.

εἰλήφθω ἐπὶ τῆς ΑΒ τυχὸν σημεῖον τὸ Δ, καὶ ἀφῃρήσθω
5ἀπὸ τῆς ΑΓ τῇ ΑΔ ἴση ΑΕ, καὶ ἐπεζεύχθω ΔΕ, καὶ συνεστάτω ἐπὶ τῆς ΔΕ τρίγωνον ἰσόπλευρον τὸ ΔΕΖ, καὶ ἐπεζεύχθω ΑΖ: λέγω, ὅτι ὑπὸ ΒΑΓ γωνία δίχα τέτμηται ὑπὸ τῆς ΑΖ εὐθείας.

ἐπεὶ γὰρ ἴση ἐστὶν ΑΔ τῇ ΑΕ, κοινὴ δὲ ΑΖ,
10δύο δὴ αἱ ΔΑ, ΑΖ δυσὶ ταῖς ΕΑ, ΑΖ ἴσαι εἰσὶν ἑκατέρα ἑκατέρᾳ. καὶ βάσις ΔΖ βάσει τῇ ΕΖ ἴση ἐστίν: γωνία ἄρα ὑπὸ ΔΑΖ γωνίᾳ τῇ ὑπὸ ΕΑΖ ἴση ἐστίν.
15

ἄρα δοθεῖσα γωνία εὐθύγραμμος ὑπὸ ΒΑΓ δίχα τέτμηται ὑπὸ τῆς ΑΖ εὐθείας: ὅπερ ἔδει ποιῆσαι.


τὴν δοθεῖσαν εὐθεῖαν πεπερασμένην δίχα τεμεῖν.

ἔστω δοθεῖσα εὐθεῖα πεπερασμένη ΑΒ: δεῖ δὴ τὴν ΑΒ εὐθεῖαν πεπερασμένην δίχα τεμεῖν.

συνεστάτω ἐπ᾽ αὐτῆς τρίγωνον ἰσόπλευρον
5τὸ ΑΒΓ, καὶ τετμήσθω ὑπὸ ΑΓΒ γωνία δίχα τῇ ΓΔ εὐθείᾳ: λέγω, ὅτι ΑΒ εὐθεῖα δίχα τέτμηται κατὰ τὸ Δ σημεῖον.

ἐπεὶ γὰρ ἴση ἐστὶν ΑΓ τῇ ΓΒ,
10κοινὴ δὲ ΓΔ, δύο δὴ αἱ ΑΓ, ΓΔ δύο ταῖς ΒΓ, ΓΔ ἴσαι εἰσὶν ἑκατέρα ἑκατέρᾳ: καὶ γωνία ὑπὸ ΑΓΔ γωνίᾳ τῇ ὑπὸ ΒΓΔ ἴση ἐστίν: βάσις ἄρα ΑΔ βάσει τῇ ΒΔ ἴση ἐστίν.

ἄρα δοθεῖσα εὐθεῖα πεπερασμένη ΑΒ δίχα τέτμηται
15κατὰ τὸ Δ: ὅπερ ἔδει ποιῆσαι.


τῇ δοθείσῃ εὐθείᾳ ἀπὸ τοῦ πρὸς αὐτῇ δοθέντος σημείου πρὸς ὀρθὰς γωνίας εὐθεῖαν γραμμὴν ἀγαγεῖν.

ἔστω μὲν δοθεῖσα εὐθεῖα ΑΒ τὸ δὲ δοθὲν σημεῖον ἐπ᾽ αὐτῆς τὸ Γ: δεῖ δὴ ἀπὸ τοῦ Γ σημείου τῇ ΑΒ εὐθείᾳ
5πρὸς ὀρθὰς γωνίας εὐθεῖαν γραμμὴν ἀγαγεῖν.

εἰλήφθω ἐπὶ τῆς ΑΓ τυχὸν σημεῖον τὸ Δ, καὶ κείσθω τῇ ΓΔ ἴση ΓΕ, καὶ συνεστάτω ἐπὶ τῆς ΔΕ τρίγωνον ἰσόπλευρον τὸ ΖΔΕ, καὶ ἐπεζεύχθω ΖΓ: λέγω, ὅτι τῇ δοθείσῃ εὐθείᾳ τῇ ΑΒ ἀπὸ
10τοῦ πρὸς αὐτῇ δοθέντος σημείου τοῦ Γ πρὸς ὀρθὰς γωνίας εὐθεῖα γραμμὴ ἦκται ΖΓ.

ἐπεὶ γὰρ ἴση ἐστὶν ΔΓ
15τῇ ΓΕ, κοινὴ δὲ ΓΖ, δύο δὴ αἱ ΔΓ, ΓΖ δυσὶ ταῖς ΕΓ, ΓΖ ἴσαι εἰσὶν ἑκατέρα ἑκατέρᾳ: καὶ βάσις ΔΖ βάσει τῇ ΖΕ ἴση ἐστίν: γωνία ἄρα ὑπὸ ΔΓΖ γωνίᾳ τῇ ὑπὸ ΕΓΖ ἴση ἐστίν: καί εἰσιν ἐφεξῆς. ὅταν δὲ εὐθεῖα ἐπ᾽ εὐθεῖαν σταθεῖσα τὰς
20ἐφεξῆς γωνίας ἴσας ἀλλήλαις ποιῇ, ὀρθὴ ἑκατέρα τῶν ἴσων γωνιῶν ἐστιν: ὀρθὴ ἄρα ἐστὶν ἑκατέρα τῶν ὑπὸ ΔΓΖ, ΖΓΕ.

τῇ ἄρα δοθείσῃ εὐθείᾳ τῇ ΑΒ ἀπὸ τοῦ πρὸς αὐτῇ δοθέντος σημείου τοῦ Γ πρὸς ὀρθὰς γωνίας εὐθεῖα γραμμὴ
25ἦκται ΓΖ: ὅπερ ἔδει ποιῆσαι.


ἐπὶ τὴν δοθεῖσαν εὐθεῖαν ἄπειρον ἀπὸ τοῦ δοθέντος σημείου, μή ἐστιν ἐπ᾽ αὐτῆς, κάθετον εὐθεῖαν γραμμὴν ἀγαγεῖν.

ἔστω μὲν δοθεῖσα εὐθεῖα ἄπειρος ΑΒ τὸ δὲ δοθὲν
5σημεῖον, μή ἐστιν ἐπ᾽ αὐτῆς, τὸ Γ: δεῖ δὴ ἐπὶ τὴν δοθεῖσαν εὐθεῖαν ἄπειρον τὴν ΑΒ ἀπὸ τοῦ δοθέντος σημείου τοῦ Γ, μή ἐστιν ἐπ᾽ αὐτῆς, κάθετον εὐθεῖαν γραμμὴν ἀγαγεῖν.

εἰλήφθω γὰρ ἐπὶ τὰ ἕτερα μέρη τῆς ΑΒ εὐθείας τυχὸν
10σημεῖον τὸ Δ, καὶ κέντρῳ μὲν τῷ Γ διαστήματι δὲ τῷ ΓΔ κύκλος γεγράφθω ΕΖΗ, καὶ τετμήσθω ΕΗ εὐθεῖα δίχα κατὰ τὸ Θ, καὶ ἐπεζεύχθωσαν αἱ ΓΗ, ΓΘ, ΓΕ εὐθεῖαι: λέγω, ὅτι ἐπὶ
15τὴν δοθεῖσαν εὐθεῖαν ἄπειρον τὴν ΑΒ ἀπὸ τοῦ δοθέντος σημείου τοῦ Γ, μή ἐστιν ἐπ᾽ αὐτῆς, κάθετος ἦκται ΓΘ.
20

ἐπεὶ γὰρ ἴση ἐστὶν ΗΘ τῇ ΘΕ, κοινὴ δὲ ΘΓ, δύο δὴ αἱ ΗΘ, ΘΓ δύο ταῖς ΕΘ, ΘΓ ἴσαι εἰσὶν ἑκατέρα ἑκατέρᾳ: καὶ βάσις ΓΗ βάσει τῇ ΓΕ ἐστιν ἴση: γωνία ἄρα ὑπὸ ΓΘΗ γωνίᾳ τῇ ὑπὸ ΕΘΓ ἐστιν ἴση. καί εἰσιν ἐφεξῆς. ὅταν δὲ εὐθεῖα ἐπ᾽ εὐθεῖαν σταθεῖσα
25τὰς ἐφεξῆς γωνίας ἴσας ἀλλήλαις ποιῇ, ὀρθὴ ἑκατέρα τῶν ἴσων γωνιῶν ἐστιν, καὶ ἐφεστηκυῖα εὐθεῖα κάθετος καλεῖται ἐφ᾽ ἣν ἐφέστηκεν.

ἐπὶ τὴν δοθεῖσαν ἄρα εὐθεῖαν ἄπειρον τὴν ΑΒ ἀπὸ τοῦ δοθέντος σημείου τοῦ Γ, μή ἐστιν ἐπ᾽ αὐτῆς,
30κάθετος ἦκται ΓΘ: ὅπερ ἔδει ποιῆσαι.


ἐὰν εὐθεῖα ἐπ᾽ εὐθεῖαν σταθεῖσα γωνίας ποιῇ, ἤτοι δύο ὀρθὰς δυσὶν ὀρθαῖς ἴσας ποιήσει.

εὐθεῖα γάρ τις ΑΒ ἐπ᾽ εὐθεῖαν τὴν ΓΔ σταθεῖσα γωνίας ποιείτω τὰς ὑπὸ ΓΒΑ, ΑΒΔ: λέγω, ὅτι αἱ ὑπὸ
5ΓΒΑ, ΑΒΔ γωνίαι ἤτοι δύο ὀρθαί εἰσιν δυσὶν ὀρθαῖς ἴσαι.

εἰ μὲν οὖν ἴση ἐστὶν ὑπὸ ΓΒΑ τῇ ὑπὸ ΑΒΔ, δύο ὀρθαί εἰσιν. εἰ δὲ οὔ, ἤχθω ἀπὸ τοῦ Β σημείου τῇ ΓΔ
10εὐθείᾳ πρὸς ὀρθὰς ΒΕ: αἱ ἄρα ὑπὸ ΓΒΕ, ΕΒΔ δύο ὀρθαί εἰσιν: καὶ ἐπεὶ ὑπὸ ΓΒΕ δυσὶ ταῖς ὑπὸ ΓΒΑ, ΑΒΕ ἴση ἐστίν, κοινὴ προσκείσθω ὑπὸ ΕΒΔ: αἱ ἄρα ὑπὸ ΓΒΕ, ΕΒΔ τρισὶ ταῖς ὑπὸ ΓΒΑ, ΑΒΕ, ΕΒΔ
15ἴσαι εἰσίν. πάλιν, ἐπεὶ ὑπὸ ΔΒΑ δυσὶ ταῖς ὑπὸ ΔΒΕ, ΕΒΑ ἴση ἐστίν, κοινὴ προσκείσθω ὑπὸ ΑΒΓ: αἱ ἄρα ὑπὸ ΔΒΑ, ΑΒΓ τρισὶ ταῖς ὑπὸ ΔΒΕ, ΕΒΑ, ΑΒΓ ἴσαι εἰσίν. ἐδείχθησαν δὲ καὶ αἱ ὑπὸ ΓΒΕ, ΕΒΔ τρισὶ ταῖς αὐταῖς ἴσαι: τὰ δὲ τῷ αὐτῷ ἴσα καὶ ἀλλήλοις ἐστὶν ἴσα:
20καὶ αἱ ὑπὸ ΓΒΕ, ΕΒΔ ἄρα ταῖς ὑπὸ ΔΒΑ, ΑΒΓ ἴσαι εἰσίν: ἀλλὰ αἱ ὑπὸ ΓΒΕ, ΕΒΔ δύο ὀρθαί εἰσιν: καὶ αἱ ὑπὸ ΔΒΑ, ΑΒΓ ἄρα δυσὶν ὀρθαῖς ἴσαι εἰσίν.

ἐὰν ἄρα εὐθεῖα ἐπ᾽ εὐθεῖαν σταθεῖσα γωνίας ποιῇ, ἤτοι δύο ὀρθὰς δυσὶν ὀρθαῖς ἴσας ποιήσει: ὅπερ ἔδει
25δεῖξαι.


ἐὰν πρός τινι εὐθείᾳ καὶ τῷ πρὸς αὐτῇ σημείῳ δύο εὐθεῖαι μὴ ἐπὶ τὰ αὐτὰ μέρη κείμεναι τὰς ἐφεξῆς γωνίας δυσὶν ὀρθαῖς ἴσας ποιῶσιν, ἐπ᾽ εὐθείας ἔσονται ἀλλήλαις αἱ εὐθεῖαι.
5

πρὸς γάρ τινι εὐθείᾳ τῇ ΑΒ καὶ τῷ πρὸς αὐτῇ σημείῳ τῷ Β δύο εὐθεῖαι αἱ ΒΓ, ΒΔ μὴ ἐπὶ τὰ αὐτὰ μέρη κείμεναι τὰς ἐφεξῆς γωνίας τὰς ὑπὸ ΑΒΓ, ΑΒΔ δύο ὀρθαῖς ἴσας ποιείτωσαν: λέγω, ὅτι ἐπ᾽ εὐθείας ἐστὶ τῇ
10ΓΒ ΒΔ.

εἰ γὰρ μή ἐστι τῇ ΒΓ ἐπ᾽ εὐθείας ΒΔ, ἔστω τῇ ΓΒ ἐπ᾽ εὐθείας ΒΕ.

ἐπεὶ οὖν εὐθεῖα ΑΒ ἐπ᾽ εὐθεῖαν τὴν ΓΒΕ ἐφέστηκεν, αἱ ἄρα ὑπὸ ΑΒΓ, ΑΒΕ γωνίαι δύο ὀρθαῖς ἴσαι
15εἰσίν: εἰσὶ δὲ καὶ αἱ ὑπὸ ΑΒΓ, ΑΒΔ δύο ὀρθαῖς ἴσαι: αἱ ἄρα ὑπὸ ΓΒΑ, ΑΒΕ ταῖς ὑπὸ ΓΒΑ, ΑΒΔ ἴσαι
15εἰσίν. κοινὴ ἀφῃρήσθω ὑπὸ ΓΒΑ: λοιπὴ ἄρα ὑπὸ ΑΒΕ λοιπῇ τῇ ὑπὸ ΑΒΔ ἐστιν ἴση, ἐλάσσων τῇ μείζονι: ὅπερ ἐστὶν ἀδύνατον. οὐκ ἄρα ἐπ᾽ εὐθείας ἐστὶν
20ΒΕ τῇ ΓΒ. ὁμοίως δὴ δείξομεν, ὅτι οὐδὲ ἄλλη τις πλὴν τῆς ΒΔ: ἐπ᾽ εὐθείας ἄρα ἐστὶν ΓΒ τῇ ΒΔ.

ἐὰν ἄρα πρός τινι εὐθείᾳ καὶ τῷ πρὸς αὐτῇ σημείῳ δύο εὐθεῖαι μὴ ἐπὶ τὰ αὐτὰ μέρη κείμεναι τὰς ἐφεξῆς γωνίας δυσὶν ὀρθαῖς ἴσας ποιῶσιν, ἐπ᾽ εὐθείας ἔσονται
25ἀλλήλαις αἱ εὐθεῖαι: ὅπερ ἔδει δεῖξαι.


ἐὰν δύο εὐθεῖαι τέμνωσιν ἀλλήλας, τὰς κατὰ κορυφὴν γωνίας ἴσας ἀλλήλαις ποιοῦσιν.

δύο γὰρ εὐθεῖαι αἱ ΑΒ, ΓΔ τεμνέτωσαν ἀλλήλας κατὰ τὸ Ε σημεῖον: λέγω, ὅτι ἴση ἐστὶν μὲν ὑπὸ ΑΕΓ γωνία
5τῇ ὑπὸ ΔΕΒ, δὲ ὑπὸ ΓΕΒ τῇ ὑπὸ ΑΕΔ.

ἐπεὶ γὰρ εὐθεῖα ΑΕ ἐπ᾽ εὐθεῖαν τὴν ΓΔ ἐφέστηκε γωνίας ποιοῦσα τὰς ὑπὸ ΓΕΑ, ΑΕΔ, αἱ ἄρα ὑπὸ ΓΕΑ, ΑΕΔ γωνίαι δυσὶν ὀρθαῖς
10ἴσαι εἰσίν. πάλιν, ἐπεὶ εὐθεῖα ΔΕ ἐπ᾽ εὐθεῖαν τὴν ΑΒ ἐφέστηκε γωνίας ποιοῦσα τὰς ὑπὸ ΑΕΔ, ΔΕΒ, αἱ ἄρα ὑπὸ ΑΕΔ, ΔΕΒ γωνίαι δυσὶν ὀρθαῖς ἴσαι εἰσίν. ἐδείχθησαν δὲ καὶ αἱ ὑπὸ ΓΕΑ, ΑΕΔ δυσὶν ὀρθαῖς ἴσαι: αἱ ἄρα ὑπὸ ΓΕΑ,
15ΑΕΔ ταῖς ὑπὸ ΑΕΔ, ΔΕΒ ἴσαι εἰσίν. κοινὴ ἀφῃρήσθω ὑπὸ ΑΕΔ: λοιπὴ ἄρα ὑπὸ ΓΕΑ λοιπῇ τῇ ὑπὸ ΒΕΔ ἴση ἐστίν: ὁμοίως δὴ δειχθήσεται, ὅτι καὶ αἱ ὑπὸ ΓΕΒ, ΔΕΑ ἴσαι εἰσίν.

ἐὰν ἄρα δύο εὐθεῖαι τέμνωσιν ἀλλήλας, τὰς κατὰ κορυφὴν
20γωνίας ἴσας ἀλλήλαις ποιοῦσιν: ὅπερ ἔδει δεῖξαι.

Πόρισμα

ἐκ δὴ τούτου φανερὸν ὅτι, ἐὰν δύο εὐθεῖαι τέμνωσιν ἀλλήλας, τὰς πρὸς τῇ τομῇ γωνίας τέτρασιν ὀρθαῖς ἴσας ποιήσουσιν.


παντὸς τριγώνου μιᾶς τῶν πλευρῶν προσεκβληθείσης ἐκτὸς γωνία ἑκατέρας τῶν ἐντὸς καὶ ἀπεναντίον γωνιῶν μείζων ἐστίν.

ἔστω τρίγωνον τὸ ΑΒΓ, καὶ προσεκβεβλήσθω αὐτοῦ
5μία πλευρὰ ΒΓ ἐπὶ τὸ Δ: λέγω, ὅτι ἐκτὸς γωνία ὑπὸ ΑΓΔ μείζων ἐστὶν ἑκατέρας τῶν ἐντὸς καὶ ἀπεναντίον τῶν ὑπὸ ΓΒΑ, ΒΑΓ γωνιῶν.

τετμήσθω ΑΓ δίχα κατὰ τὸ Ε, καὶ
10ἐπιζευχθεῖσα ΒΕ ἐκβεβλήσθω ἐπ᾽ εὐθείας ἐπὶ τὸ Ζ, καὶ κείσθω τῇ ΒΕ ἴση ΕΖ, καὶ ἐπεζεύχθω ΖΓ, καὶ διήχθω ΑΓ ἐπὶ τὸ Η.

ἐπεὶ οὖν ἴση ἐστὶν μὲν ΑΕ τῇ ΕΓ, δὲ ΒΕ τῇ ΕΖ,
15δύο δὴ αἱ ΑΕ, ΕΒ δυσὶ ταῖς ΓΕ, ΕΖ ἴσαι εἰσὶν ἑκατέρα ἑκατέρᾳ: καὶ γωνία ὑπὸ ΑΕΒ γωνίᾳ τῇ ὑπὸ ΖΕΓ ἴση ἐστίν: κατὰ κορυφὴν γάρ: βάσις ἄρα ΑΒ βάσει τῇ ΖΓ ἴση ἐστίν, καὶ τὸ ΑΒΕ τρίγωνον τῷ ΖΕΓ τριγώνῳ ἐστὶν ἴσον, καὶ αἱ λοιπαὶ γωνίαι ταῖς λοιπαῖς γωνίαις
20ἴσαι εἰσὶν ἑκατέρα ἑκατέρᾳ, ὑφ᾽ ἃς αἱ ἴσαι πλευραὶ ὑποτείνουσιν: ἴση ἄρα ἐστὶν ὑπὸ ΒΑΕ τῇ ὑπὸ ΕΓΖ. μείζων δέ ἐστιν ὑπὸ ΕΓΔ τῆς ὑπὸ ΕΓΖ: μείζων ἄρα ὑπὸ ΑΓΔ τῆς ὑπὸ ΒΑΕ. ὁμοίως δὴ τῆς ΒΓ τετμημένης δίχα δειχθήσεται καὶ ὑπὸ ΒΓΗ, τουτέστιν
25ὑπὸ ΑΓΔ, μείζων καὶ τῆς ὑπὸ ΑΒΓ.

παντὸς ἄρα τριγώνου μιᾶς τῶν πλευρῶν προσεκβληθείσης ἐκτὸς γωνία ἑκατέρας τῶν ἐντὸς καὶ ἀπεναντίον γωνιῶν μείζων ἐστίν: ὅπερ ἔδει δεῖξαι.


παντὸς τριγώνου αἱ δύο γωνίαι δύο ὀρθῶν ἐλάσσονές εἰσι πάντῃ μεταλαμβανόμεναι.

ἔστω τρίγωνον τὸ ΑΒΓ: λέγω, ὅτι τοῦ ΑΒΓ τριγώνου αἱ δύο γωνίαι δύο ὀρθῶν ἐλάττονές
5εἰσι πάντῃ μεταλαμβανόμεναι.

Ἐκβεβλήσθω γὰρ ΒΓ ἐπὶ τὸ Δ.

καὶ ἐπεὶ τριγώνου τοῦ ΑΒΓ ἐκτός ἐστι γωνία ὑπὸ ΑΓΔ, μείζων ἐστὶ τῆς ἐντὸς καὶ ἀπεναντίον τῆς ὑπὸ
10ΑΒΓ. κοινὴ προσκείσθω ὑπὸ ΑΓΒ: αἱ ἄρα ὑπὸ ΑΓΔ, ΑΓΒ τῶν ὑπὸ ΑΒΓ, ΒΓΑ μείζονές εἰσιν. ἀλλ᾽ αἱ ὑπὸ ΑΓΔ, ΑΓΒ δύο ὀρθαῖς ἴσαι εἰσίν: αἱ ἄρα ὑπὸ ΑΒΓ, ΒΓΑ δύο ὀρθῶν ἐλάσσονές εἰσιν. ὁμοίως δὴ δείξομεν, ὅτι καὶ αἱ ὑπὸ ΒΑΓ, ΑΓΒ δύο ὀρθῶν ἐλάσσονές εἰσι
15καὶ ἔτι αἱ ὑπὸ ΓΑΒ, ΑΒΓ.

παντὸς ἄρα τριγώνου αἱ δύο γωνίαι δύο ὀρθῶν ἐλάσσονές εἰσι πάντῃ μεταλαμβανόμεναι: ὅπερ ἔδει δεῖξαι.


παντὸς τριγώνου μείζων πλευρὰ τὴν μείζονα γωνίαν ὑποτείνει.

ἔστω γὰρ τρίγωνον τὸ ΑΒΓ μείζονα ἔχον τὴν ΑΓ πλευρὰν τῆς ΑΒ: λέγω, ὅτι καὶ γωνία ὑπὸ ΑΒΓ μείζων
5ἐστὶ τῆς ὑπὸ ΒΓΑ.

ἐπεὶ γὰρ μείζων ἐστὶν ΑΓ τῆς ΑΒ, κείσθω τῇ ΑΒ ἴση ΑΔ, καὶ ἐπεζεύχθω ΒΔ.

καὶ ἐπεὶ τριγώνου τοῦ ΒΓΔ ἐκτός ἐστι γωνία ὑπὸ ΑΔΒ, μείζων ἐστὶ τῆς ἐντὸς καὶ
10ἀπεναντίον τῆς ὑπὸ ΔΓΒ: ἴση δὲ ὑπὸ ΑΔΒ τῇ ὑπὸ ΑΒΔ, ἐπεὶ καὶ πλευρὰ ΑΒ τῇ ΑΔ ἐστιν ἴση: μείζων ἄρα καὶ ὑπὸ ΑΒΔ τῆς ὑπὸ ΑΓΒ: πολλῷ ἄρα ὑπὸ
15ΑΒΓ μείζων ἐστὶ τῆς ὑπὸ ΑΓΒ.

παντὸς ἄρα τριγώνου μείζων πλευρὰ τὴν μείζονα γωνίαν ὑποτείνει: ὅπερ ἔδει δεῖξαι.


παντὸς τριγώνου ὑπὸ τὴν μείζονα γωνίαν μείζων πλευρὰ ὑποτείνει.

ἔστω τρίγωνον τὸ ΑΒΓ μείζονα ἔχον τὴν ὑπὸ ΑΒΓ γωνίαν τῆς ὑπὸ ΒΓΑ: λέγω,
5ὅτι καὶ πλευρὰ ΑΓ πλευρᾶς τῆς ΑΒ μείζων ἐστίν.

εἰ γὰρ μή, ἤτοι ἴση ἐστὶν ΑΓ τῇ ΑΒ ἐλάσσων: ἴση μὲν οὖν οὐκ ἔστιν ΑΓ τῇ ΑΒ: ἴση γὰρ ἂν ἦν καὶ γωνία ὑπὸ ΑΒΓ
10τῇ ὑπὸ ΑΓΒ: οὐκ ἔστι δέ: οὐκ ἄρα ἴση ἐστὶν ΑΓ τῇ ΑΒ. οὐδὲ μὴν ἐλάσσων ἐστὶν ΑΓ τῆς ΑΒ: ἐλάσσων γὰρ ἂν ἦν καὶ γωνία ὑπὸ ΑΒΓ τῆς ὑπὸ ΑΓΒ: οὐκ ἔστι δέ: οὐκ ἄρα ἐλάσσων ἐστὶν ΑΓ τῆς ΑΒ. ἐδείχθη δέ, ὅτι οὐδὲ ἴση ἐστίν. μείζων ἄρα ἐστὶν
15 ΑΓ τῆς ΑΒ.

παντὸς ἄρα τριγώνου ὑπὸ τὴν μείζονα γωνίαν μείζων πλευρὰ ὑποτείνει: ὅπερ ἔδει δεῖξαι.


παντὸς τριγώνου αἱ δύο πλευραὶ τῆς λοιπῆς μείζονές εἰσι πάντῃ μεταλαμβανόμεναι.

ἔστω γὰρ τρίγωνον τὸ ΑΒΓ: λέγω, ὅτι τοῦ ΑΒΓ τριγώνου αἱ δύο πλευραὶ τῆς λοιπῆς μείζονές εἰσι πάντῃ
5μεταλαμβανόμεναι, αἱ μὲν ΒΑ, ΑΓ τῆς ΒΓ, αἱ δὲ ΑΒ, ΒΓ τῆς ΑΓ, αἱ δὲ ΒΓ, ΓΑ τῆς ΑΒ.

διήχθω γὰρ ΒΑ ἐπὶ τὸ Δ σημεῖον, καὶ κείσθω τῇ ΓΑ ἴση ΑΔ, καὶ ἐπεζεύχθω ΔΓ.
10

ἐπεὶ οὖν ἴση ἐστὶν ΔΑ τῇ ΑΓ, ἴση ἐστὶ καὶ γωνία ὑπὸ ΑΔΓ τῇ ὑπὸ ΑΓΔ: μείζων ἄρα ὑπὸ ΒΓΔ τῆς ὑπὸ ΑΔΓ: καὶ ἐπεὶ τρίγωνόν ἐστι τὸ ΔΓΒ μείζονα ἔχον τὴν ὑπὸ ΒΓΔ
15γωνίαν τῆς ὑπὸ ΒΔΓ, ὑπὸ δὲ τὴν μείζονα γωνίαν μείζων πλευρὰ ὑποτείνει, ΔΒ ἄρα τῆς ΒΓ ἐστι μείζων. ἴση δὲ ΔΑ τῇ ΑΓ: μείζονες ἄρα αἱ ΒΑ, ΑΓ τῆς ΒΓ: ὁμοίως δὴ δείξομεν, ὅτι καὶ αἱ μὲν ΑΒ, ΒΓ τῆς ΓΑ μείζονές εἰσιν, αἱ δὲ ΒΓ, ΓΑ τῆς ΑΒ.
20

παντὸς ἄρα τριγώνου αἱ δύο πλευραὶ τῆς λοιπῆς μείζονές εἰσι πάντῃ μεταλαμβανόμεναι: ὅπερ ἔδει δεῖξαι.


ἐὰν τριγώνου ἐπὶ μιᾶς τῶν πλευρῶν ἀπὸ τῶν περάτων δύο εὐθεῖαι ἐντὸς συσταθῶσιν, αἱ συσταθεῖσαι τῶν λοιπῶν τοῦ τριγώνου δύο πλευρῶν ἐλάττονες μὲν ἔσονται, μείζονα δὲ γωνίαν περιέξουσιν.
5

τριγώνου γὰρ τοῦ ΑΒΓ ἐπὶ μιᾶς τῶν πλευρῶν τῆς ΒΓ ἀπὸ τῶν περάτων τῶν Β, Γ δύο εὐθεῖαι ἐντὸς συνεστάτωσαν αἱ ΒΔ, ΔΓ: λέγω, ὅτι αἱ ΒΔ, ΔΓ τῶν λοιπῶν τοῦ τριγώνου δύο πλευρῶν τῶν ΒΑ, ΑΓ ἐλάσσονες μέν εἰσιν, μείζονα δὲ γωνίαν περιέχουσι τὴν ὑπὸ ΒΔΓ
10τῆς ὑπὸ ΒΑΓ.

διήχθω γὰρ ΒΔ ἐπὶ τὸ Ε. καὶ ἐπεὶ παντὸς τριγώνου αἱ δύο πλευραὶ τῆς λοιπῆς μείζονές εἰσιν, τοῦ ΑΒΕ ἄρα τριγώνου αἱ δύο πλευραὶ αἱ ΑΒ, ΑΕ τῆς ΒΕ μείζονές εἰσιν: κοινὴ προσκείσθω ΕΓ: αἱ ἄρα ΒΑ, ΑΓ τῶν
10ΒΕ, ΕΓ μείζονές εἰσιν. πάλιν, ἐπεὶ τοῦ ΓΕΔ τριγώνου αἱ δύο πλευραὶ αἱ ΓΕ, ΕΔ τῆς ΓΔ μείζονές εἰσιν, κοινὴ προσκείσθω ΔΒ: αἱ ΓΕ, ΕΒ ἄρα τῶν ΓΔ, ΔΒ μείζονές εἰσιν.
20ἀλλὰ τῶν ΒΕ, ΕΓ μείζονες ἐδείχθησαν αἱ ΒΑ, ΑΓ: πολλῷ ἄρα αἱ ΒΑ, ΑΓ τῶν ΒΔ, ΔΓ μείζονές εἰσιν.

πάλιν, ἐπεὶ παντὸς τριγώνου ἐκτὸς γωνία τῆς ἐντὸς
25καὶ ἀπεναντίον μείζων ἐστίν, τοῦ ΓΔΕ ἄρα τριγώνου ἐκτὸς γωνία ὑπὸ ΒΔΓ μείζων ἐστὶ τῆς ὑπὸ ΓΕΔ. διὰ ταὐτὰ τοίνυν καὶ τοῦ ΑΒΕ τριγώνου ἐκτὸς γωνία ὑπὸ ΓΕΒ μείζων ἐστὶ τῆς ὑπὸ ΒΑΓ. ἀλλὰ τῆς ὑπὸ ΓΕΒ μείζων ἐδείχθη ὑπὸ ΒΔΓ: πολλῷ ἄρα ὑπὸ
30ΒΔΓ μείζων ἐστὶ τῆς ὑπὸ ΒΑΓ.

ἐὰν ἄρα τριγώνου ἐπὶ μιᾶς τῶν πλευρῶν ἀπὸ τῶν περάτων δύο εὐθεῖαι ἐντὸς συσταθῶσιν, αἱ συσταθεῖσαι τῶν λοιπῶν τοῦ τριγώνου δύο πλευρῶν ἐλάττονες μέν εἰσιν, μείζονα δὲ γωνίαν περιέχουσιν: ὅπερ ἔδει δεῖξαι.


ἐκ τριῶν εὐθειῶν, αἵ εἰσιν ἴσαι τρισὶ ταῖς δοθείσαις εὐθείαις, τρίγωνον συστήσασθαι: δεῖ δὲ τὰς δύο τῆς λοιπῆς μείζονας εἶναι πάντῃ μεταλαμβανομένας διὰ τὸ καὶ παντὸς τριγώνου τὰς δύο πλευρὰς τῆς λοιπῆς μείζονας
5εἶναι πάντῃ μεταλαμβανομένας.

ἔστωσαν αἱ δοθεῖσαι τρεῖς εὐθεῖαι αἱ Α, Β, Γ, ὧν αἱ δύο τῆς λοιπῆς μείζονες ἔστωσαν πάντῃ μεταλαμβανόμεναι, αἱ μὲν Α, Β τῆς Γ, αἱ δὲ Α, Γ τῆς Β, καὶ ἔτι αἱ Β, Γ τῆς Α: δεῖ δὴ ἐκ τῶν ἴσων ταῖς Α, Β, Γ τρίγωνον
10συστήσασθαι.

Ἐκκείσθω τις εὐθεῖα ΔΕ πεπερασμένη μὲν κατὰ τὸ Δ ἄπειρος δὲ κατὰ τὸ Ε, καὶ κείσθω τῇ μὲν Α ἴση ΔΖ, τῇ δὲ Β ἴση ΖΗ, τῇ δὲ Γ ἴση ΗΘ: καὶ κέντρῳ μὲν τῷ Ζ, διαστήματι δὲ τῷ ΖΔ κύκλος γεγράφθω
15ΔΚΛ: πάλιν κέντρῳ μὲν τῷ Η, διαστήματι δὲ τῷ ΗΘ κύκλος γεγράφθω ΚΛΘ, καὶ ἐπεζεύχθωσαν αἱ ΚΖ, ΚΗ: λέγω, ὅτι ἐκ τριῶν εὐθειῶν τῶν ἴσων ταῖς Α, Β, Γ τρίγωνον συνέσταται τὸ ΚΖΗ.

ἐπεὶ γὰρ τὸ Ζ σημεῖον κέντρον ἐστὶ τοῦ ΔΚΛ κύκλου,
20ἴση ἐστὶν ΖΔ τῇ ΖΚ: ἀλλὰ ΖΔ τῇ Α ἐστιν ἴση. καὶ ΚΖ ἄρα τῇ Α ἐστιν ἴση. πάλιν, ἐπεὶ τὸ Η σημεῖον κέντρον ἐστὶ τοῦ ΛΚΘ κύκλου, ἴση ἐστὶν ΗΘ τῇ ΗΚ: ἀλλὰ ΗΘ τῇ Γ ἐστιν ἴση: καὶ ΚΗ ἄρα τῇ Γ ἐστιν ἴση. ἐστὶ δὲ καὶ ΖΗ τῇ Β ἴση: αἱ τρεῖς ἄρα εὐθεῖαι αἱ
25ΚΖ, ΖΗ, ΗΚ τρισὶ ταῖς Α, Β, Γ ἴσαι εἰσίν.

ἐκ τριῶν ἄρα εὐθειῶν τῶν ΚΖ, ΖΗ, ΗΚ, αἵ εἰσιν ἴσαι τρισὶ ταῖς δοθείσαις εὐθείαις ταῖς Α, Β, Γ, τρίγωνον συνέσταται τὸ ΚΖΗ: ὅπερ ἔδει ποιῆσαι.


πρὸς τῇ δοθείσῃ εὐθείᾳ καὶ τῷ πρὸς αὐτῇ σημείῳ τῇ δοθείσῃ γωνίᾳ εὐθυγράμμῳ ἴσην γωνίαν εὐθύγραμμον συστήσασθαι.

ἔστω μὲν δοθεῖσα εὐθεῖα ΑΒ, τὸ δὲ πρὸς αὐτῇ
5σημεῖον τὸ Α, δὲ δοθεῖσα γωνία εὐθύγραμμος ὑπὸ ΔΓΕ: δεῖ δὴ πρὸς τῇ δοθείσῃ εὐθείᾳ τῇ ΑΒ καὶ τῷ πρὸς αὐτῇ σημείῳ τῷ Α τῇ δοθείσῃ γωνίᾳ εὐθυγράμμῳ τῇ ὑπὸ ΔΓΕ ἴσην γωνίαν εὐθύγραμμον
10συστήσασθαι.

εἰλήφθω ἐφ᾽ ἑκατέρας τῶν ΓΔ, ΓΕ τυχόντα σημεῖα τὰ Δ, Ε, καὶ ἐπεζεύχθω ΔΕ: καὶ ἐκ τριῶν εὐθειῶν, αἵ εἰσιν ἴσαι τρισὶ ταῖς ΓΔ, ΔΕ, ΓΕ, τρίγωνον συνεστάτω
15τὸ ΑΖΗ, ὥστε ἴσην εἶναι τὴν μὲν ΓΔ τῇ ΑΖ, τὴν δὲ ΓΕ τῇ ΑΗ, καὶ ἔτι τὴν ΔΕ τῇ ΖΗ.

ἐπεὶ οὖν δύο αἱ ΔΓ, ΓΕ δύο ταῖς ΖΑ, ΑΗ ἴσαι εἰσὶν ἑκατέρα ἑκατέρᾳ, καὶ βάσις ΔΕ βάσει τῇ ΖΗ ἴση, γωνία ἄρα ὑπὸ ΔΓΕ γωνίᾳ τῇ ὑπὸ ΖΑΗ ἐστιν ἴση.
20

πρὸς ἄρα τῇ δοθείσῃ εὐθείᾳ τῇ ΑΒ καὶ τῷ πρὸς αὐτῇ σημείῳ τῷ Α τῇ δοθείσῃ γωνίᾳ εὐθυγράμμῳ τῇ ὑπὸ ΔΓΕ ἴση γωνία εὐθύγραμμος συνέσταται ὑπὸ ΖΑΗ: ὅπερ ἔδει ποιῆσαι.


ἐὰν δύο τρίγωνα τὰς δύο πλευρὰς ταῖς δύο πλευραῖς ἴσας ἔχῃ ἑκατέραν ἑκατέρᾳ, τὴν δὲ γωνίαν τῆς γωνίας μείζονα ἔχῃ τὴν ὑπὸ τῶν ἴσων εὐθειῶν περιεχομένην, καὶ τὴν βάσιν τῆς βάσεως μείζονα ἕξει.
5

ἔστω δύο τρίγωνα τὰ ΑΒΓ, ΔΕΖ τὰς δύο πλευρὰς τὰς ΑΒ, ΑΓ ταῖς δύο πλευραῖς ταῖς ΔΕ, ΔΖ ἴσας ἔχοντα ἑκατέραν ἑκατέρᾳ, τὴν μὲν ΑΒ τῇ ΔΕ τὴν δὲ ΑΓ τῇ ΔΖ, δὲ πρὸς τῷ Α γωνία τῆς πρὸς τῷ Δ γωνίας μείζων ἔστω: λέγω, ὅτι καὶ βάσις ΒΓ βάσεως τῆς ΕΖ
10μείζων ἐστίν.

ἐπεὶ γὰρ μείζων ὑπὸ ΒΑΓ γωνία τῆς ὑπὸ ΕΔΖ γωνίας, συνεστάτω πρὸς τῇ ΔΕ εὐθείᾳ καὶ τῷ πρὸς αὐτῇ σημείῳ τῷ Δ τῇ ὑπὸ ΒΑΓ γωνίᾳ ἴση ὑπὸ ΕΔΗ, καὶ κείσθω ὁποτέρᾳ τῶν ΑΓ, ΔΖ ἴση ΔΗ, καὶ ἐπεζεύχθωσαν
15αἱ ΕΗ, ΖΗ.

ἐπεὶ οὖν ἴση ἐστὶν μὲν ΑΒ τῇ ΔΕ, δὲ ΑΓ τῇ ΔΗ, δύο δὴ αἱ ΒΑ, ΑΓ δυσὶ ταῖς ΕΔ, ΔΗ ἴσαι εἰσὶν ἑκατέρα ἑκατέρᾳ: καὶ γωνία ὑπὸ ΒΑΓ γωνίᾳ τῇ ὑπὸ ΕΔΗ ἴση:
20βάσις ἄρα ΒΓ βάσει τῇ ΕΗ ἐστιν ἴση. πάλιν, ἐπεὶ ἴση ἐστὶν ΔΖ τῇ ΔΗ, ἴση ἐστὶ καὶ ὑπὸ ΔΗΖ γωνία τῇ ὑπὸ ΔΖΗ: μείζων ἄρα ὑπὸ ΔΖΗ τῆς
25ὑπὸ ΕΗΖ: πολλῷ ἄρα μείζων ἐστὶν ὑπὸ ΕΖΗ τῆς ὑπὸ ΕΗΖ. καὶ ἐπεὶ τρίγωνόν ἐστι τὸ ΕΖΗ μείζονα ἔχον τὴν ὑπὸ ΕΖΗ γωνίαν τῆς ὑπὸ ΕΗΖ, ὑπὸ δὲ τὴν μείζονα γωνίαν μείζων πλευρὰ ὑποτείνει, μείζων ἄρα καὶ πλευρὰ ΕΗ τῆς ΕΖ. ἴση δὲ ΕΗ τῇ ΒΓ: μείζων
30ἄρα καὶ ΒΓ τῆς ΕΖ.

ἐὰν ἄρα δύο τρίγωνα τὰς δύο πλευρὰς δυσὶ πλευραῖς ἴσας ἔχῃ ἑκατέραν ἑκατέρᾳ, τὴν δὲ γωνίαν τῆς γωνίας μείζονα ἔχῃ τὴν ὑπὸ τῶν ἴσων εὐθειῶν περιεχομένην, καὶ τὴν βάσιν τῆς βάσεως μείζονα ἕξει: ὅπερ ἔδει δεῖξαι.


ἐὰν δύο τρίγωνα τὰς δύο πλευρὰς δυσὶ πλευραῖς ἴσας ἔχῃ ἑκατέραν ἑκατέρᾳ, τὴν δὲ βάσιν τῆς βάσεως μείζονα ἔχῃ, καὶ τὴν γωνίαν τῆς γωνίας μείζονα ἕξει τὴν ὑπὸ τῶν ἴσων εὐθειῶν περιεχομένην.
5

ἔστω δύο τρίγωνα τὰ ΑΒΓ, ΔΕΖ τὰς δύο πλευρὰς τὰς ΑΒ, ΑΓ ταῖς δύο πλευραῖς ταῖς ΔΕ, ΔΖ ἴσας ἔχοντα ἑκατέραν ἑκατέρᾳ, τὴν μὲν ΑΒ τῇ ΔΕ, τὴν δὲ ΑΓ τῇ ΔΖ: βάσις δὲ ΒΓ βάσεως τῆς ΕΖ μείζων ἔστω:
10λέγω, ὅτι καὶ γωνία ὑπὸ ΒΑΓ γωνίας τῆς ὑπὸ ΕΔΖ μείζων ἐστίν:

εἰ γὰρ μή, ἤτοι ἴση ἐστὶν αὐτῇ ἐλάσσων: ἴση μὲν οὖν οὐκ ἔστιν ὑπὸ ΒΑΓ τῇ ὑπὸ ΕΔΖ: ἴση γὰρ ἂν ἦν καὶ βάσις
15 ΒΓ βάσει τῇ ΕΖ: οὐκ ἔστι δέ. οὐκ ἄρα ἴση ἐστὶ γωνία ὑπὸ ΒΑΓ τῇ ὑπὸ ΕΔΖ: οὐδὲ μὴν ἐλάσσων ἐστὶν ὑπὸ ΒΑΓ τῆς ὑπὸ ΕΔΖ: ἐλάσσων γὰρ ἂν ἦν καὶ βάσις ΒΓ βάσεως τῆς ΕΖ: οὐκ ἔστι δέ: οὐκ ἄρα ἐλάσσων ἐστὶν ὑπὸ ΒΑΓ γωνία τῆς ὑπὸ ΕΔΖ. ἐδείχθη δὲ ὅτι οὐδὲ
20ἴση: μείζων ἄρα ἐστὶν ὑπὸ ΒΑΓ τῆς ὑπὸ ΕΔΖ.

ἐὰν ἄρα δύο τρίγωνα τὰς δύο πλευρὰς δυσὶ πλευραῖς ἴσας ἔχῃ ἑκατέραν ἑκάτερᾳ, τὴν δὲ βάσιν τῆς βάσεως μείζονα ἔχῃ, καὶ τὴν γωνίαν τῆς γωνίας μείζονα ἕξει τὴν ὑπὸ τῶν ἴσων εὐθειῶν περιεχομένην: ὅπερ ἔδει δεῖξαι.


ἐὰν δύο τρίγωνα τὰς δύο γωνίας δυσὶ γωνίαις ἴσας ἔχῃ ἑκατέραν ἑκατέρᾳ καὶ μίαν πλευρὰν μιᾷ πλευρᾷ ἴσην ἤτοι τὴν πρὸς ταῖς ἴσαις γωνίαις τὴν ὑποτείνουσαν ὑπὸ μίαν τῶν ἴσων γωνιῶν, καὶ τὰς λοιπὰς πλευρὰς ταῖς λοιπαῖς
5πλευραῖς ἴσας ἕξει ἑκατέραν ἑκατέρᾳ καὶ τὴν λοιπὴν γωνίαν τῇ λοιπῇ γωνίᾳ.

ἔστω δύο τρίγωνα τὰ ΑΒΓ, ΔΕΖ τὰς δύο γωνίας τὰς ὑπὸ ΑΒΓ, ΒΓΑ δυσὶ ταῖς ὑπὸ ΔΕΖ, ΕΖΔ ἴσας ἔχοντα ἑκατέραν ἑκατέρᾳ, τὴν μὲν ὑπὸ
10ΑΒΓ τῇ ὑπὸ ΔΕΖ, τὴν δὲ ὑπὸ ΒΓΑ τῇ ὑπὸ ΕΖΔ: ἐχέτω δὲ καὶ μίαν πλευρὰν μιᾷ πλευρᾷ ἴσην,
10πρότερον τὴν πρὸς ταῖς ἴσαις γωνίαις τὴν ΒΓ τῇ ΕΖ: λέγω,
15ὅτι καὶ τὰς λοιπὰς πλευρὰς ταῖς λοιπαῖς πλευραῖς ἴσας ἕξει ἑκατέραν ἑκατέρᾳ, τὴν μὲν ΑΒ τῇ ΔΕ τὴν δὲ ΑΓ τῇ ΔΖ, καὶ τὴν λοιπὴν γωνίαν τῇ λοιπῇ γωνίᾳ, τὴν ὑπὸ ΒΑΓ τῇ ὑπὸ ΕΔΖ.

εἰ γὰρ ἄνισός ἐστιν ΑΒ τῇ ΔΕ, μία αὐτῶν μείζων
20ἐστίν. ἔστω μείζων ΑΒ, καὶ κείσθω τῇ ΔΕ ἴση ΒΗ, καὶ ἐπεζεύχθω ΗΓ.

ἐπεὶ οὖν ἴση ἐστὶν μὲν ΒΗ τῇ ΔΕ, δὲ ΒΓ τῇ ΕΖ, δύο δὴ αἱ ΒΗ, ΒΓ δυσὶ ταῖς ΔΕ, ΕΖ ἴσαι εἰσὶν ἑκατέρα ἑκατέρᾳ: καὶ γωνία ὑπὸ ΗΒΓ γωνίᾳ τῇ ὑπὸ ΔΕΖ ἴση
25ἐστίν: βάσις ἄρα ΗΓ βάσει τῇ ΔΖ ἴση ἐστίν, καὶ τὸ ΗΒΓ τρίγωνον τῷ ΔΕΖ τριγώνῳ ἴσον ἐστίν, καὶ αἱ λοιπαὶ γωνίαι ταῖς λοιπαῖς γωνίαις ἴσαι ἔσονται, ὑφ᾽ ἃς αἱ ἴσαι πλευραὶ ὑποτείνουσιν: ἴση ἄρα ὑπὸ ΗΓΒ γωνία τῇ ὑπὸ ΔΖΕ. ἀλλὰ ὑπὸ ΔΖΕ τῇ ὑπὸ ΒΓΑ ὑπόκειται ἴση:
30καὶ