previous next

Click on a word to bring up parses, dictionary entries, and frequency statistics



οἱ ὅμοιοι κῶνοι καὶ κύλινδροι πρὸς ἀλλήλους ἐν τριπλασίονι λόγῳ εἰσὶ τῶν ἐν ταῖς βάσεσι διαμέτρων.

ἔστωσαν ὅμοιοι κῶνοι καὶ κύλινδροι, ὧν βάσεις μὲν οἱ ΑΒΓΔ, ΕΖΗΘ κύκλοι, διάμετροι δὲ τῶν βάσεων αἱ
5ΒΔ, ΖΘ, ἄξονες δὲ τῶν κώνων καὶ κυλίνδρων οἱ ΚΛ, ΜΝ: λέγω, ὅτι κῶνος, οὗ βάσις μὲν ἐστιν ΑΒΓΔ κύκλος, κορυφὴ δὲ τὸ Λ σημεῖον, πρὸς τὸν κῶνον, οὗ βάσις μὲν ἐστιν ΕΖΗΘ κύκλος, κορυφὴ δὲ τὸ Ν σημεῖον, τριπλασίονα λόγον ἔχει ἤπερ ΒΔ πρὸς τὴν ΖΘ.
5

εἰ γὰρ μὴ ἔχει ΑΒΓΔΛ κῶνος πρὸς τὸν ΕΖΗΘΝ κῶνον τριπλασίονα λόγον ἤπερ ΒΔ πρὸς τὴν ΖΘ, ἕξει ΑΒΓΔΛ κῶνος πρὸς ἔλασσόν τι τοῦ ΕΖΗΘΝ κώνου στερεὸν τριπλασίονα λόγον πρὸς μεῖζον. ἐχέτω πρότερον πρὸς ἔλασσον τὸ Ξ, καὶ ἐγγεγράφθω εἰς τὸν
15ΕΖΗΘ κύκλον τετράγωνον τὸ ΕΖΗΘ: τὸ ἄρα ΕΖΗΘ τετράγωνον μεῖζόν ἐστιν τὸ ἥμισυ τοῦ ΕΖΗΘ κύκλου. καὶ ἀνεστάτω ἐπὶ τοῦ ΕΖΗΘ τετραγώνου πυραμὶς τὴν αὐτὴν κορυφὴν ἔχουσα τῷ κώνῳ: ἄρα ἀνασταθεῖσα πυραμὶς μείζων ἐστὶν τὸ ἥμισυ μέρος τοῦ κώνου. τετμήσθωσαν
20δὴ αἱ ΕΖ, ΖΗ, ΗΘ, ΘΕ περιφέρειαι δίχα κατὰ τὰ Ο, Π, Ρ, Σ σημεῖα, καὶ ἐπεζεύχθωσαν αἱ ΕΟ, ΟΖ, ΖΠ, ΠΗ, ΗΡ, ΡΘ, ΘΣ, ΣΕ. καὶ ἕκαστον ἄρα τῶν ΕΟΖ, ΖΠΗ, ΗΡΘ, ΘΣΕ τριγώνων μεῖζόν ἐστιν τὸ ἥμισυ μέρος τοῦ καθ᾽ ἑαυτὸ τμήματος τοῦ ΕΖΗΘ
25κύκλου. καὶ ἀνεστάτω ἐφ᾽ ἑκάστου τῶν ΕΟΖ, ΖΠΗ, ΗΡΘ, ΘΣΕ τριγώνων πυραμὶς τὴν αὐτὴν κορυφὴν ἔχουσα τῷ κώνῳ: καὶ ἑκάστη ἄρα τῶν ἀνασταθεισῶν πυραμίδων μείζων ἐστὶν τὸ ἥμισυ μέρος τοῦ καθ᾽ ἑαυτὴν τμήματος τοῦ κώνου. τέμνοντες δὴ τὰς ὑπολειπομένας
30περιφερείας δίχα καὶ ἐπιζευγνύντες εὐθείας καὶ ἀνιστάντες ἐφ᾽ ἑκάστου τῶν τριγώνων πυραμίδας τὴν αὐτὴν κορυφὴν ἐχούσας τῷ κώνῳ καὶ τοῦτο ἀεὶ ποιοῦντες καταλείψομέν τινα ἀποτμήματα τοῦ κώνου, ἔσται ἐλάσσονα τῆς ὑπεροχῆς, ὑπερέχει ΕΖΗΘΝ κῶνος τοῦ Ξ στερεοῦ.
35λελείφθω, καὶ ἔστω τὰ ἐπὶ τῶν ΕΟ, ΟΖ, ΖΠ, ΠΗ, ΗΡ, ΡΘ, ΘΣ, ΣΕ: λοιπὴ ἄρα πυραμίς, ἧς βάσις μέν ἐστι τὸ ΕΟΖΠΗΡΘΣ πολύγωνον, κορυφὴ δὲ τὸ Ν σημεῖον, μείζων ἐστὶ τοῦ Ξ στερεοῦ. ἐγγεγράφθω καὶ εἰς τὸν ΑΒΓΔ κύκλον τῷ ΕΟΖΠΗΡΘΣ πολυγώνῳ ὅμοιόν
40τε καὶ ὁμοίως κείμενον πολύγωνον τὸ ΑΤΒΥΓΦΔΧ, καὶ ἀνεστάτω ἐπὶ τοῦ ΑΤΒΥΓΦΔΧ πολυγώνου πυραμὶς τὴν αὐτὴν κορυφὴν ἔχουσα τῷ κώνῳ, καὶ τῶν μὲν περιεχόντων τὴν πυραμίδα, ἧς βάσις μέν ἐστι τὸ ΑΤΒΥ ΓΦΔΧ πολύγωνον, κορυφὴ δὲ τὸ Λ σημεῖον, ἓν τρίγωνον
45ἔστω τὸ ΛΒΤ, τῶν δὲ περιεχόντων τὴν πυραμίδα, ἧς βάσις μέν ἐστι τὸ ΕΟΖΠΗΡΘΣ πολύγωνον, κορυφὴ δὲ τὸ Ν σημεῖον, ἓν τρίγωνον ἔστω τὸ ΝΖΟ, καὶ ἐπεζεύχθωσαν αἱ ΚΤ, ΜΟ. καὶ ἐπεὶ ὅμοιός ἐστιν ΑΒΓΔΛ κῶνος τῷ ΕΖΗΘΝ κώνῳ, ἔστιν ἄρα ὡς ΒΔ πρὸς τὴν ΖΘ,
50οὕτως ΚΛ ἄξων πρὸς τὸν ΜΝ ἄξονα. ὡς δὲ ΒΔ πρὸς τὴν ΖΘ, οὕτως ΒΚ πρὸς τὴν ΖΜ: καὶ ὡς ἄρα ΒΚ πρὸς τὴν ΖΜ, οὕτως ΚΛ πρὸς τὴν ΜΝ. καὶ ἐναλλὰξ ὡς ΒΚ πρὸς τὴν ΚΛ, οὕτως ΖΜ πρὸς τὴν ΜΝ. καὶ περὶ ἴσας γωνίας τὰς ὑπὸ ΒΚΛ, ΖΜΝ αἱ πλευραὶ ἀνάλογόν
55εἰσιν: ὅμοιον ἄρα ἐστὶ τὸ ΒΚΛ τρίγωνον τῷ ΖΜΝ τριγώνῳ. πάλιν, ἐπεί ἐστιν ὡς ΒΚ πρὸς τὴν ΚΤ, οὕτως ΖΜ πρὸς τὴν ΜΟ, καὶ περὶ ἴσας γωνίας τὰς ὑπὸ ΒΚΤ, ΖΜΟ, ἐπειδήπερ, μέρος ἐστὶν ὑπὸ ΒΚΤ γωνία τῶν πρὸς τῷ Κ κέντρῳ τεσσάρων ὀρθῶν, τὸ αὐτὸ μέρος ἐστὶ
60καὶ ὑπὸ ΖΜΟ γωνία τῶν πρὸς τῷ Μ κέντρῳ τεσσάρων ὀρθῶν: ἐπεὶ οὖν περὶ ἴσας γωνίας αἱ πλευραὶ ἀνάλογόν εἰσιν, ὅμοιον ἄρα ἐστὶ τὸ ΒΚΤ τρίγωνον τῷ ΖΜΟ τριγώνῳ. πάλιν, ἐπεὶ ἐδείχθη ὡς ΒΚ πρὸς τὴν ΚΛ, οὕτως ΖΜ πρὸς τὴν ΜΝ, ἴση δὲ μὲν ΒΚ τῇ ΚΤ, δὲ ΖΜ
65τῇ ΟΜ, ἔστιν ἄρα ὡς ΤΚ πρὸς τὴν ΚΛ, οὕτως ΟΜ πρὸς τὴν ΜΝ. καὶ περὶ ἴσας γωνίας τὰς ὑπὸ ΤΚΛ, ΟΜΝ: ὀρθαὶ γάρ: αἱ πλευραὶ ἀνάλογόν εἰσιν: ὅμοιον ἄρα ἐστὶ τὸ ΛΚΤ τρίγωνον τῷ ΝΜΟ τριγώνῳ. καὶ ἐπεὶ διὰ τὴν ὁμοιότητα τῶν ΛΚΒ, ΝΜΖ τριγώνων ἐστὶν ὡς
70 ΛΒ πρὸς τὴν ΒΚ, οὕτως ΝΖ πρὸς τὴν ΖΜ, διὰ δὲ τὴν ὁμοιότητα τῶν ΒΚΤ, ΖΜΟ τριγώνων ἐστὶν ὡς ΚΒ πρὸς τὴν ΒΤ, οὕτως ΜΖ πρὸς τὴν ΖΟ, δι᾽ ἴσου ἄρα ὡς ΛΒ πρὸς τὴν ΒΤ, οὕτως ΝΖ πρὸς τὴν ΖΟ. πάλιν, ἐπεὶ διὰ τὴν ὁμοιότητα τῶν ΛΤΚ, ΝΟΜ τριγώνων
75ἐστὶν ὡς ΛΤ πρὸς τὴν ΤΚ, οὕτως ΝΟ πρὸς τὴν ΟΜ, διὰ δὲ τὴν ὁμοιότητα τῶν ΤΚΒ, ΟΜΖ τριγώνων ἐστὶν ὡς ΚΤ πρὸς τὴν ΤΒ, οὕτως ΜΟ πρὸς τὴν ΟΖ, δι᾽ ἴσου ἄρα ὡς ΛΤ πρὸς τὴν ΤΒ, οὕτως ΝΟ πρὸς τὴν ΟΖ. ἐδείχθη δὲ καὶ ὡς ΤΒ πρὸς τὴν ΒΛ, οὕτως
80ΟΖ πρὸς τὴν ΖΝ. δι᾽ ἴσου ἄρα ὡς ΤΛ πρὸς τὴν ΛΒ, οὕτως ΟΝ πρὸς τὴν ΝΖ. τῶν ΛΤΒ, ΝΟΖ ἄρα τριγώνων ἀνάλογόν εἰσιν αἱ πλευραί: ἰσογώνια ἄρα ἐστὶ τὰ ΛΤΒ, ΝΟΖ τρίγωνα: ὥστε καὶ ὅμοια. καὶ πυραμὶς ἄρα, ἧς βάσις μὲν τὸ ΒΚΤ τρίγωνον, κορυφὴ δὲ τὸ Λ σημεῖον,
85ὁμοία ἐστὶ πυραμίδι, ἧς βάσις μὲν τὸ ΖΜΟ τρίγωνον, κορυφὴ δὲ τὸ Ν σημεῖον: ὑπὸ γὰρ ὁμοίων ἐπιπέδων περιέχονται ἴσων τὸ πλῆθος. αἱ δὲ ὅμοιαι πυραμίδες καὶ τριγώνους ἔχουσαι βάσεις ἐν τριπλασίονι λόγῳ εἰσὶ τῶν ὁμολόγων πλευρῶν. ἄρα ΒΚΤΛ πυραμὶς πρὸς τὴν ΖΜΟΝ
90πυραμίδα τριπλασίονα λόγον ἔχει ἤπερ ΒΚ πρὸς τὴν ΖΜ. ὁμοίως δὴ ἐπιζευγνύντες ἀπὸ τῶν Α, Χ, Δ, Φ, Γ, Υ ἐπὶ τὸ Κ εὐθείας καὶ ἀπὸ τῶν Ε, Σ, Θ, Ρ, Η, Π ἐπὶ τὸ Μ καὶ ἀνιστάντες ἐφ᾽ ἑκάστου τῶν τριγώνων πυραμίδας τὴν αὐτὴν κορυφὴν ἐχούσας τοῖς κώνοις δείξομεν, ὅτι καὶ
95ἑκάστη τῶν ὁμοταγῶν πυραμίδων πρὸς ἑκάστην ὁμοταγῆ πυραμίδα τριπλασίονα λόγον ἕξει ἤπερ ΒΚ ὁμόλογος πλευρὰ πρὸς τὴν ΖΜ ὁμόλογον πλευράν, τουτέστιν ἤπερ ΒΔ πρὸς τὴν ΖΘ. καὶ ὡς ἓν τῶν ἡγουμένων πρὸς ἓν τῶν ἑπομένων, οὕτως ἅπαντα τὰ ἡγούμενα πρὸς ἅπαντα τὰ
100ἑπόμενα: ἔστιν ἄρα καὶ ὡς ΒΚΤΛ πυραμὶς πρὸς τὴν ΖΜΟΝ πυραμίδα, οὕτως ὅλη πυραμίς, ἧς βάσις τὸ ΑΤΒΥΓΦΔΧ πολύγωνον, κορυφὴ δὲ τὸ Λ σημεῖον, πρὸς τὴν ὅλην πυραμίδα, ἧς βάσις μὲν τὸ ΕΟΖΠΗΡΘΣ πολύγωνον, κορυφὴ δὲ τὸ Ν σημεῖον: ὥστε καὶ πυραμίς,
105ἧς βάσις μὲν τὸ ΑΤΒΥΓΦΔΧ, κορυφὴ δὲ τὸ Λ, πρὸς τὴν πυραμίδα, ἧς βάσις μὲν τὸ ΕΟΖΠΗΡΘΣ πολύγωνον, κορυφὴ δὲ τὸ Ν σημεῖον, τριπλασίονα λόγον ἔχει ἤπερ ΒΔ πρὸς τὴν ΖΘ. ὑπόκειται δὲ καὶ κῶνος, οὗ βάσις μὲν ΑΒΓΔ κύκλος, κορυφὴ δὲ τὸ Λ σημεῖον,
110πρὸς τὸ Ξ στερεὸν τριπλασίονα λόγον ἔχων ἤπερ ΒΔ πρὸς τὴν ΖΘ: ἔστιν ἄρα ὡς κῶνος, οὗ βάσις μέν ἐστιν ΑΒΓΔ κύκλος, κορυφὴ δὲ τὸ Λ, πρὸς τὸ Ξ στερεόν, οὕτως πυραμίς, ἧς βάσις μὲν τὸ ΑΤΒΥΓΦΔΧ πολύγωνον, κορυφὴ δὲ τὸ Λ, πρὸς τὴν πυραμίδα, ἧς βάσις
115μέν ἐστι τὸ ΕΟΖΠΗΡΘΣ πολύγωνον, κορυφὴ δὲ τὸ Ν: ἐναλλὰξ ἄρα, ὡς κῶνος, οὗ βάσις μὲν ΑΒΓΔ κύκλος, κορυφὴ δὲ τὸ Λ, πρὸς τὴν ἐν αὐτῷ πυραμίδα, ἧς βάσις μὲν τὸ ΑΤΒΥΓΦΔΧ πολύγωνον, κορυφὴ δὲ τὸ Λ, οὕτως τὸ Ξ στερεὸν πρὸς τὴν πυραμίδα, ἧς βάσις μέν
120ἐστι τὸ ΕΟΖΠΗΡΘΣ πολύγωνον, κορυφὴ δὲ τὸ Ν. μείζων δὲ εἰρημένος κῶνος τῆς ἐν αὐτῷ πυραμίδος: ἐμπεριέχει γὰρ αὐτήν. μεῖζον ἄρα καὶ τὸ Ξ στερεὸν τῆς πυραμίδος, ἧς βάσις μέν ἐστι τὸ ΕΟΖΠΗΡΘΣ πολύγωνον, κορυφὴ δὲ τὸ Ν. ἀλλὰ καὶ ἔλαττον: ὅπερ ἐστὶν ἀδύνατον.
125οὐκ ἄρα κῶνος, οὗ βάσις ΑΒΓΔ κύκλος, κορυφὴ δὲ τὸ Λ σημεῖον, πρὸς ἔλαττόν τι τοῦ κώνου στερεόν, οὗ βάσις μὲν ΕΖΗΘ κύκλος, κορυφὴ δὲ τὸ Ν σημεῖον, τριπλασίονα λόγον ἔχει ἤπερ ΒΔ πρὸς τὴν ΖΘ. ὁμοίως δὴ δείξομεν, ὅτι οὐδὲ ΕΖΗΘΝ κῶνος πρὸς ἔλαττόν τι
130τοῦ ΑΒΓΔΛ κώνου στερεὸν τριπλασίονα λόγον ἔχει ἤπερ ΖΘ πρὸς τὴν ΒΔ.

λέγω δή, ὅτι οὐδὲ ΑΒΓΔΛ κῶνος πρὸς μεῖζόν τι
130τοῦ ΕΖΗΘΝ κώνου στερεὸν τριπλασίονα λόγον ἔχει ἤπερ ΒΔ πρὸς τὴν ΖΘ.
135

εἰ γὰρ δυνατόν, ἐχέτω πρὸς μεῖζον τὸ Ξ. ἀνάπαλιν ἄρα τὸ Ξ στερεὸν πρὸς τὸν ΑΒΓΔΛ κῶνον τριπλασίονα λόγον ἔχει ἤπερ ΖΘ πρὸς τὴν ΒΔ. ὡς δὲ τὸ Ξ στερεὸν πρὸς τὸν ΑΒΓΔΛ κῶνον, οὕτως ΕΖΗΘΝ κῶνος πρὸς ἔλαττόν τι τοῦ ΑΒΓΔΛ κώνου στερεόν. καὶ ΕΖΗΘΝ
140ἄρα κῶνος πρὸς ἔλαττόν τι τοῦ ΑΒΓΔΛ κώνου στερεὸν τριπλασίονα λόγον ἔχει ἤπερ ΖΘ πρὸς τὴν ΒΔ: ὅπερ ἀδύνατον ἐδείχθη. οὐκ ἄρα ΑΒΓΔΛ κῶνος πρὸς μεῖζόν τι τοῦ ΕΖΗΘΝ κώνου στερεὸν τριπλασίονα λόγον ἔχει ἤπερ ΒΔ πρὸς τὴν ΖΘ. ἐδείχθη δέ, ὅτι οὐδὲ πρὸς ἔλαττον.
145 ΑΒΓΔΛ ἄρα κῶνος πρὸς τὸν ΕΖΗΘΝ κῶνον τριπλασίονα λόγον ἔχει ἤπερ ΒΔ πρὸς τὴν ΖΘ.

ὡς δὲ κῶνος πρὸς τὸν κῶνον, κύλινδρος πρὸς τὸν κύλινδρον: τριπλάσιος γὰρ κύλινδρος τοῦ κώνου ἐπὶ τῆς αὐτῆς βάσεως τῷ κώνῳ καὶ ἰσοϋψὴς αὐτῷ. καὶ κύλινδρος
150ἄρα πρὸς τὸν κύλινδρον τριπλασίονα λόγον ἔχει ἤπερ ΒΔ πρὸς τὴν ΖΘ.

οἱ ἄρα ὅμοιοι κῶνοι καὶ κύλινδροι πρὸς ἀλλήλους ἐν τριπλασίονι λόγῳ εἰσὶ τῶν ἐν ταῖς βάσεσι διαμέτρων: ὅπερ ἔδει δεῖξαι.

Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 3.0 United States License.

An XML version of this text is available for download, with the additional restriction that you offer Perseus any modifications you make. Perseus provides credit for all accepted changes, storing new additions in a versioning system.

load focus English (Thomas L. Heath, Sir Thomas Little Heath, 1956)
load Vocabulary Tool
hide Display Preferences
Greek Display:
Arabic Display:
View by Default:
Browse Bar: