previous next

Click on a word to bring up parses, dictionary entries, and frequency statistics



τὰ ὅμοια πολύγωνα εἴς τε ὅμοια τρίγωνα διαιρεῖται καὶ εἰς ἴσα τὸ πλῆθος καὶ ὁμόλογα τοῖς ὅλοις, καὶ τὸ πολύγωνον πρὸς τὸ πολύγωνον διπλασίονα λόγον ἔχει ἤπερ ὁμόλογος πλευρὰ πρὸς τὴν ὁμόλογον πλευράν.
5

ἔστω ὅμοια πολύγωνα τὰ ΑΒΓΔΕ, ΖΗΘΚΛ, ὁμόλογος δὲ ἔστω ΑΒ τῇ ΖΗ: λέγω, ὅτι τὰ ΑΒΓΔΕ, ΖΗΘΚΛ πολύγωνα εἴς τε ὅμοια τρίγωνα διαιρεῖται καὶ εἰς ἴσα τὸ πλῆθος καὶ ὁμόλογα τοῖς ὅλοις, καὶ τὸ ΑΒΓΔΕ πολύγωνον πρὸς τὸ ΖΗΘΚΛ πολύγωνον
10διπλασίονα λόγον ἔχει ἤπερ ΑΒ πρὸς τὴν ΖΗ.

ἐπεζεύχθωσαν αἱ ΒΕ, ΕΓ, ΗΛ, ΛΘ.

καὶ ἐπεὶ ὅμοιόν ἐστι τὸ ΑΒΓΔΕ πολύγωνον τῷ
15ΖΗΘΚΛ πολυγώνῳ, ἴση ἐστὶν ὑπὸ ΒΑΕ γωνία τῇ ὑπὸ ΗΖΛ. καί ἐστιν ὡς ΒΑ πρὸς ΑΕ, οὕτως ΗΖ
15πρὸς ΖΛ. ἐπεὶ οὖν δύο τρίγωνά ἐστι τὰ ΑΒΕ, ΖΗΛ μίαν
20γωνίαν μιᾷ γωνίᾳ ἴσην ἔχοντα, περὶ δὲ τὰς ἴσας γωνίας τὰς πλευρὰς ἀνάλογον, ἰσογώνιον ἄρα ἐστὶ τὸ ΑΒΕ τρίγωνον τῷ ΖΗΛ τριγώνῳ: ὥστε καὶ ὅμοιον: ἴση ἄρα ἐστὶν ὑπὸ ΑΒΕ γωνία τῇ ὑπὸ ΖΗΛ. ἔστι δὲ καὶ ὅλη ὑπὸ ΑΒΓ ὅλῃ τῇ ὑπὸ ΖΗΘ ἴση διὰ τὴν ὁμοιότητα τῶν
25πολυγώνων: λοιπὴ ἄρα ὑπὸ ΕΒΓ γωνία τῇ ὑπὸ ΛΗΘ ἐστιν ἴση. καὶ ἐπεὶ διὰ τὴν ὁμοιότητα τῶν ΑΒΕ, ΖΗΛ τριγώνων ἐστὶν ὡς ΕΒ πρὸς ΒΑ, οὕτως ΛΗ πρὸς ΗΖ, ἀλλὰ μὴν καὶ διὰ τὴν ὁμοιότητα τῶν πολυγώνων ἐστὶν ὡς ΑΒ πρὸς ΒΓ, οὕτως ΖΗ πρὸς ΗΘ, δι᾽
30ἴσου ἄρα ἐστὶν ὡς ΕΒ πρὸς ΒΓ, οὕτως ΛΗ πρὸς ΗΘ, καὶ περὶ τὰς ἴσας γωνίας τὰς ὑπὸ ΕΒΓ, ΛΗΘ αἱ πλευραὶ ἀνάλογόν εἰσιν: ἰσογώνιον ἄρα ἐστὶ τὸ ΕΒΓ τρίγωνον τῷ ΛΗΘ τριγώνῳ: ὥστε καὶ ὅμοιόν ἐστι τὸ ΕΒΓ τρίγωνον τῷ ΛΗΘ τριγώνῳ. διὰ τὰ αὐτὰ δὴ καὶ τὸ
35ΕΓΔ τρίγωνον ὅμοιόν ἐστι τῷ ΛΘΚ τριγώνῳ. τὰ ἄρα ὅμοια πολύγωνα τὰ ΑΒΓΔΕ, ΖΗΘΚΛ εἴς τε ὅμοια τρίγωνα διῄρηται καὶ εἰς ἴσα τὸ πλῆθος.

λέγω, ὅτι καὶ ὁμόλογα τοῖς ὅλοις, τουτέστιν ὥστε ἀνάλογον εἶναι τὰ τρίγωνα, καὶ ἡγούμενα μὲν εἶναι τὰ
40ΑΒΕ, ΕΒΓ, ΕΓΔ, ἑπόμενα δὲ αὐτῶν τὰ ΖΗΛ, ΛΗΘ, ΛΘΚ, καὶ ὅτι τὸ ΑΒΓΔΕ πολύγωνον πρὸς τὸ ΖΗΘΚΛ πολύγωνον διπλασίονα λόγον ἔχει ἤπερ ὁμόλογος πλευρὰ πρὸς τὴν ὁμόλογον πλευράν, τουτέστιν ΑΒ πρὸς τὴν ΖΗ.
45

ἐπεζεύχθωσαν γὰρ αἱ ΑΓ, ΖΘ. καὶ ἐπεὶ διὰ τὴν ὁμοιότητα τῶν πολυγώνων ἴση ἐστὶν ὑπὸ ΑΒΓ γωνία τῇ ὑπὸ ΖΗΘ, καί ἐστιν ὡς ΑΒ πρὸς ΒΓ, οὕτως ΖΗ πρὸς ΗΘ, ἰσογώνιόν ἐστι τὸ ΑΒΓ τρίγωνον τῷ ΖΗΘ τριγώνῳ: ἴση ἄρα ἐστὶν μὲν ὑπὸ ΒΑΓ γωνία τῇ ὑπὸ
50ΗΖΘ, δὲ ὑπὸ ΒΓΑ τῇ ὑπὸ ΗΘΖ. καὶ ἐπεὶ ἴση ἐστὶν ὑπὸ ΒΑΜ γωνία τῇ ὑπὸ ΗΖΝ, ἔστι δὲ καὶ ὑπὸ ΑΒΜ τῇ ὑπὸ ΖΗΝ ἴση, καὶ λοιπὴ ἄρα ὑπὸ ΑΜΒ λοιπῇ τῇ ὑπὸ ΖΝΗ ἴση ἐστίν: ἰσογώνιον ἄρα ἐστὶ τὸ ΑΒΜ τρίγωνον τῷ ΖΗΝ τριγώνῳ. ὁμοίως δὴ δείξομεν, ὅτι καὶ
55τὸ ΒΜΓ τρίγωνον ἰσογώνιόν ἐστι τῷ ΗΝΘ τριγώνῳ. ἀνάλογον ἄρα ἐστίν, ὡς μὲν ΑΜ πρὸς ΜΒ, οὕτως ΖΝ πρὸς ΝΗ, ὡς δὲ ΒΜ πρὸς ΜΓ, οὕτως ΗΝ πρὸς ΝΘ: ὥστε καὶ δι᾽ ἴσου, ὡς ΑΜ πρὸς ΜΓ, οὕτως ΖΝ πρὸς ΝΘ. ἀλλ᾽ ὡς ΑΜ πρὸς ΜΓ, οὕτως τὸ
60ΑΒΜ τρίγωνον πρὸς τὸ ΜΒΓ, καὶ τὸ ΑΜΕ πρὸς τὸ ΕΜΓ: πρὸς ἄλληλα γάρ εἰσιν ὡς αἱ βάσεις. καὶ ὡς ἄρα ἓν τῶν ἡγουμένων πρὸς ἓν τῶν ἑπομένων, οὕτως ἅπαντα τὰ ἡγούμενα πρὸς ἅπαντα τὰ ἑπόμενα: ὡς ἄρα τὸ ΑΜΒ τρίγωνον πρὸς τὸ ΒΜΓ, οὕτως τὸ ΑΒΕ πρὸς τὸ ΓΒΕ.
65ἀλλ᾽ ὡς τὸ ΑΜΒ πρὸς τὸ ΒΜΓ, οὕτως ΑΜ πρὸς ΜΓ: καὶ ὡς ἄρα ΑΜ πρὸς ΜΓ, οὕτως τὸ ΑΒΕ τρίγωνον πρὸς τὸ ΕΒΓ τρίγωνον. διὰ τὰ αὐτὰ δὴ καὶ ὡς ΖΝ πρὸς ΝΘ, οὕτως τὸ ΖΗΛ τρίγωνον πρὸς τὸ ΗΛΘ τρίγωνον. καί ἐστιν ὡς ΑΜ πρὸς ΜΓ, οὕτως ΖΝ
70πρὸς ΝΘ: καὶ ὡς ἄρα τὸ ΑΒΕ τρίγωνον πρὸς τὸ ΒΕΓ τρίγωνον, οὕτως τὸ ΖΗΛ τρίγωνον πρὸς τὸ ΗΛΘ τρίγωνον, καὶ ἐναλλὰξ, ὡς τὸ ΑΒΕ τρίγωνον πρὸς τὸ ΖΗΛ τρίγωνον, οὕτως τὸ ΒΕΓ τρίγωνον πρὸς τὸ ΗΛΘ τρίγωνον. ὁμοίως δὴ δείξομεν ἐπιζευχθεισῶν τῶν ΒΔ,
75ΗΚ, ὅτι καὶ ὡς τὸ ΒΕΓ τρίγωνον πρὸς τὸ ΛΗΘ τρίγωνον, οὕτως τὸ ΕΓΔ τρίγωνον πρὸς τὸ ΛΘΚ τρίγωνον. καὶ ἐπεί ἐστιν ὡς τὸ ΑΒΕ τρίγωνον πρὸς τὸ ΖΗΛ τρίγωνον, οὕτως τὸ ΕΒΓ πρὸς τὸ ΛΗΘ, καὶ ἔτι τὸ ΕΓΔ πρὸς τὸ ΛΘΚ, καὶ ὡς ἄρα ἓν τῶν ἡγουμένων
80πρὸς ἓν τῶν ἑπομένων, οὕτως ἅπαντα τὰ ἡγούμενα πρὸς ἅπαντα τὰ ἑπόμενα: ἔστιν ἄρα ὡς τὸ ΑΒΕ τρίγωνον πρὸς τὸ ΖΗΛ τρίγωνον, οὕτως τὸ ΑΒΓΔΕ πολύγωνον πρὸς τὸ ΖΗΘΚΛ πολύγωνον. ἀλλὰ τὸ ΑΒΕ τρίγωνον πρὸς τὸ ΖΗΛ τρίγωνον διπλασίονα λόγον ἔχει ἤπερ
85ΑΒ ὁμόλογος πλευρὰ πρὸς τὴν ΖΗ ὁμόλογον πλευράν: τὰ γὰρ ὅμοια τρίγωνα ἐν διπλασίονι λόγῳ ἐστὶ τῶν ὁμολόγων πλευρῶν. καὶ τὸ ΑΒΓΔΕ ἄρα πολύγωνον πρὸς τὸ ΖΗΘΚΛ πολύγωνον διπλασίονα λόγον ἔχει ἤπερ ΑΒ ὁμόλογος πλευρὰ πρὸς τὴν ΖΗ ὁμόλογον πλευράν.
90

τὰ ἄρα ὅμοια πολύγωνα εἴς τε ὅμοια τρίγωνα διαιρεῖται καὶ εἰς ἴσα τὸ πλῆθος καὶ ὁμόλογα τοῖς ὅλοις, καὶ τὸ πολύγωνον πρὸς τὸ πολύγωνον διπλασίονα λόγον ἔχει ἤπερ ὁμόλογος πλευρὰ πρὸς τὴν ὁμόλογον πλευράν: ὅπερ ἔδει δεῖξαι.
95

Πόρισμα

ὡσαύτως δὲ καὶ ἐπὶ τῶν ὁμοίων τετραπλεύρων δειχθήσεται, ὅτι ἐν διπλασίονι λόγῳ εἰσὶ τῶν ὁμολόγων πλευρῶν. ἐδείχθη δὲ καὶ ἐπὶ τῶν τριγώνων: ὥστε καὶ καθόλου τὰ ὅμοια εὐθύγραμμα σχήματα πρὸς ἄλληλα ἐν διπλασίονι
100λόγῳ εἰσὶ τῶν ὁμολόγων πλευρῶν. ὅπερ ἔδει δεῖξαι.

πόρισμα β#

καὶ ἐὰν τῶν ΑΒ, ΖΗ τρίτην ἀνάλογον λάβωμεν τὴν Ξ, ΒΑ πρὸς τὴν Ξ διπλασίονα λόγον ἔχει ἤπερ ΑΒ πρὸς τὴν ΖΗ. ἔχει δὲ καὶ τὸ πολύγωνον πρὸς τὸ πολύγωνον
105 τὸ τετράπλευρον πρὸς τὸ τετράπλευρον διπλασίονα λόγον ἤπερ ὁμόλογος πλευρὰ πρὸς τὴν ὁμόλογον πλευράν, τουτέστιν ΑΒ πρὸς τὴν ΖΗ: ἐδείχθη δὲ τοῦτο καὶ ἐπὶ τῶν τριγώνων: ὥστε καὶ καθόλου φανερόν, ὅτι, ἐὰν τρεῖς εὐθεῖαι ἀνάλογον ὦσιν, ἔσται ὡς πρώτη πρὸς
110τὴν τρίτην, οὕτως τὸ ἀπὸ τῆς πρώτης εἶδος πρὸς τὸ ἀπὸ τῆς δευτέρας τὸ ὅμοιον καὶ ὁμοίως ἀναγραφόμενον.

Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 3.0 United States License.

An XML version of this text is available for download, with the additional restriction that you offer Perseus any modifications you make. Perseus provides credit for all accepted changes, storing new additions in a versioning system.

load focus English (Thomas L. Heath, Sir Thomas Little Heath, 1956)
load Vocabulary Tool
hide Display Preferences
Greek Display:
Arabic Display:
View by Default:
Browse Bar: