#### PROPOSITION 5.

If a number be a part of a number, and another be the same part of another, the sum will also be the same part of the sum that the one is of the one.

For let the number A be a part of BC, and another, D, the same part of another EF that A is of BC; I say that the sum of A, D is also the same part of the sum of BC, EF that A is of BC.

For since, whatever part A is of BC, D is also the same part of EF, therefore, as many numbers as there are in BC equal to A, so many numbers are there also in EF equal to D.

Let BC be divided into the numbers equal to A, namely BG, GC, and EF into the numbers equal to D, namely EH, HF; then the multitude of BG, GC will be equal to the multitude of EH, HF.

And, since BG is equal to A, and EH to D, therefore BG, EH are also equal to A, D.

For the same reason GC, HF are also equal to A, D.

Therefore, as many numbers as there are in BC equal to A, so many are there also in BC, EF equal to A, D.

Therefore, whatever multiple BC is of A, the same multiple also is the sum of BC, EF of the sum of A, D.

Therefore, whatever part A is of BC, the same part also is the sum of A, D of the sum of BC, EF. Q. E. D.

An XML version of this text is available for download, with the additional restriction that you offer Perseus any modifications you make. Perseus provides credit for all accepted changes, storing new additions in a versioning system.

load focus Greek (J. L. Heiberg, 1883)
hide Display Preferences
 Greek Display: Unicode (precombined) Unicode (combining diacriticals) Beta Code SPIonic SGreek GreekKeys Latin transliteration Arabic Display: Unicode Buckwalter transliteration View by Default: Original Language Translation Browse Bar: Show by default Hide by default