^{1}it is reasonable that the units should be prior and posterior; and similarly in the case of 2's, if there is a first 2. For it is reasonable and indeed necessary that after the first there should be a second; and if a second, a third; and so on with the rest in sequence.But the two statements, that there is after 1 a first and a second unit, and that there is a first 2, are incompatible. These thinkers, however, recognize a first unit and first 1, but not a second and third; and they recognize a first 2, but not a second and third.

It is also
evident that if all units are inaddible, there cannot be an Ideal 2
and 3, and similarly with the other numbers;for whether the units are indistinguishable or
each is different in kind from every other, numbers must be produced
by addition; e.g. 2 by adding 1 to another 1, and 3 by adding another
1 to the 2, and 4 similarly.^{2}
This being so, numbers cannot be generated as these thinkers try to
generate them, from Unity and the dyad; because 2 becomes a part of
3,^{3} and 3 of 4,
[20]
and the same applies to the following
numbers.But
according to them 4 was generated from the first 2 and the
indeterminate dyad, thus consisting of two 2's apart from the Ideal
2.^{4}
Otherwise 4 will consist of the Ideal 2 and another 2 added to it, and
the Ideal 2 will consist of the Ideal 1 and another 1; and if this is
so the other element cannot be the indeterminate dyad, because it
produces one unit and not a definite 2.^{5}

Again, how can there be other 3's and 2's besides the Ideal numbers
3 and 2, and in what way can they be composed of prior and posterior
units? All these theories are absurd and fictitious, and there can be
no primary 2 and Ideal 3. Yet there must be, if we are to regard Unity
and the indeterminate dyad as elements.^{6} But if the consequences are
impossible, the principles cannot be of this nature.

If, then, any one unit differs in kind from any other, these and other similar consequences necessarily follow. If, on the other hand, while the units in different numbers are different, those which are in the same number are alone indistinguishable from one another, even so the consequences which follow are no less difficult.