#### PROPOSITION 22.

If there be any number of magnitudes whatever, and others equal to them in multitude, which taken two and two together are in the same ratio, they will also be in the same ratio ex aequali.

Let there be any number of magnitudes A, B, C, and others D, E, F equal to them in multitude, which taken two and two together are in the same ratio, so that,

as A is to B, so is D to E,
and, as B is to C, so is E to F; I say that they will also be in the same ratio ex aequali,
<that is, as A is to C, so is D to F>.

For of A, D let equimultiples G, H be taken, and of B, E other, chance, equimultiples K, L; and, further, of C, F other, chance, equimultiples M, N.

Then, since, as A is to B, so is D to E, and of A, D equimultiples G, H have been taken, and of B, E other, chance, equimultiples K, L,

therefore, as G is to K, so is H to L. [V. 4]

For the same reason also,

as K is to M, so is L to N.

Since, then, there are three magnitudes G, K, M, and others H, L, N equal to them in multitude, which taken two and two together are in the same ratio, therefore, , if G is in excess of M, H is also in excess of N; if equal, equal; and if less, less. [V. 20]

And G, H are equimultiples of A, D,

and M, N other, chance, equimultiples of C, F.

Therefore, as A is to C, so is D to F. [V. Def. 5]

Therefore etc. Q. E. D.

This work is licensed under a Creative Commons Attribution-ShareAlike 3.0 United States License.

An XML version of this text is available for download, with the additional restriction that you offer Perseus any modifications you make. Perseus provides credit for all accepted changes, storing new additions in a versioning system.

load focus Greek (J. L. Heiberg, 1883)
hide Display Preferences
 Greek Display: Unicode (precombined) Unicode (combining diacriticals) Beta Code SPIonic SGreek GreekKeys Latin transliteration Arabic Display: Unicode Buckwalter transliteration View by Default: Original Language Translation Browse Bar: Show by default Hide by default