#### Proposition 23.

On a given straight line and at a point on it to construct a rectilineal angle equal to a given rectilineal angle.

Let AB be the given straight line, A the point on it, and the angle DCE the given rectilineal angle;

thus it is required to construct on the given straight line AB, and at the point A on it, a rectilineal angle equal to the given rectilineal angle DCE.

On the straight lines CD, CE respectively let the points D, E be taken at random; let DE be joined, and out of three straight lines which are equal to the three straight lines CD, DE, CE let the triangle AFG be constructed in such a way that CD is equal to AF, CE to AG, and further DE to FG.

Then, since the two sides DC, CE are equal to the two sides FA, AG respectively,

and the base DE is equal to the base FG, the angle DCE is equal to the angle FAG. [I. 8]

Therefore on the given straight line AB, and at the point A on it, the rectilineal angle FAG has been constructed equal to the given rectilineal angle DCE.

Q. E. F.

An XML version of this text is available for download, with the additional restriction that you offer Perseus any modifications you make. Perseus provides credit for all accepted changes, storing new additions in a versioning system.

load focus Greek (J. L. Heiberg, 1883)
hide Display Preferences
 Greek Display: Unicode (precombined) Unicode (combining diacriticals) Beta Code SPIonic SGreek GreekKeys Latin transliteration Arabic Display: Unicode Buckwalter transliteration View by Default: Original Language Translation Browse Bar: Show by default Hide by default