previous next

Proposition 6.

If in a triangle two angles be equal to one another, the sides which subtend the equal angles will also be equal to one another.

Let ABC be a triangle having the angle ABC equal to the angle ACB;

I say that the side AB is also equal to the side AC.

For, if AB is unequal to AC, one of them is greater.

Let AB be greater; and from AB the greater let DB be cut off equal to AC the less;

let DC be joined.

Then, since DB is equal to AC, and BC is common,

the two sides DB, BC are equal to the two sides AC, CB respectively;
and the angle DBC is equal to the angle ACB;
therefore the base DC is equal to the base AB, and the triangle DBC will be equal to the triangle ACB, the less to the greater: which is absurd. Therefore AB is not unequal to AC; it is therefore equal to it.

Therefore etc.

Q. E. D.

Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 3.0 United States License.

An XML version of this text is available for download, with the additional restriction that you offer Perseus any modifications you make. Perseus provides credit for all accepted changes, storing new additions in a versioning system.

load focus Greek (J. L. Heiberg, 1883)
hide Display Preferences
Greek Display:
Arabic Display:
View by Default:
Browse Bar: