If there be two unequal straight lines, and to the greater there be applied a parallelogram equal to the fourth part of the square on the less and deficient by a square figure, and if it divide it into parts which are incommensurable, the square on the greater will be greater than the square on the less by the square on a straight line incommensurable with the greater.

And, if the square on the greater be greater than the square on the less by the square on a straight line incommensurable with the greater, and if there be applied to the greater a parallelogram equal to the fourth part of the square on the less and deficient by a square figure, it divides it into parts which are incommensurable.

Let A, BC be two unequal straight lines, of which BC is the greater, and to BC let there be applied a parallelogram equal to the fourth part of the square on the less, A, and deficient by a square figure. Let this be the rectangle BD, DC, [cf. Lemma before X. 17]