The square on the first bimedial straight line applied to a rational straight line produces as breadth the second binomial.

Let AB be a first bimedial straight line divided into its medials at C, of which medials AC is the greater; let a rational straight line DE be set out, and let there be applied to DE the parallelogram DF equal to the square on AB, producing DG as its breadth; I say that DG is a second binominal straight line.