The square on the side of the sum of two medial areas applied to a rational straight line produces as breadth the sixth binomial.

Let AB be the side of the sum of two medial areas, divided at C, let DE be a rational straight line, and let there be applied to DE the parallelogram DF equal to the square on AB, producing DG as its breadth; I say that DG is a sixth binomial straight line.

For let the same construction be made as before.

Then, since AB is the side of the sum of two medial areas, divided at C, therefore AC, CB are straight lines incommensurable in square which make the sum of the squares on them medial, the rectangle contained by them medial, and moreover the sum of the squares on them incommensurable with the rectangle contained by them, [X. 41]