If there be three plane angles of which two, taken together in any manner, are greater than the remaining one, and they are contained by equal straight lines, it is possible to construct a triangle out of the straight lines joining the extremities of the equal straight lines.

Let there be three plane angles ABC, DEF, GHK, of which two, taken together in any manner, are greater than the remaining one, namely the angles ABC, DEF greater than the angle GHK, the angles DEF, GHK greater than the angle ABC, and, further, the angles GHK, ABC greater than the angle DEF; let the straight lines AB, BC, DE, EF, GH, HK be equal, and let AC, DF, GK be joined; I say that it is possible to construct a triangle out of straight lines equal to AC, DF, GK, that is, that any two of the straight lines AC, DF, GK are greater than the remaining one.