If there be two equal plane angles, and on their vertices there be set up elevated straight lines containing equal angles with the original straight lines respectively, if on the elevated straight lines points be taken at random and perpendiculars be drawn from them to the planes in which the original angles are, and if from the points so arising in the planes straight lines be joined to the vertices of the original angles, they will contain, with the elevated straight lines, equal angles.

Let the angles BAC, EDF be two equal rectilineal angles, and from the points A, D let the elevated straight lines AG, DM be set up containing, with the original straight lines, equal angles respectively, namely, the angle MDE to the angle GAB and the angle MDF to the angle GAC, let points G, M be taken at random on AG, DM, let GL, MN be drawn from the points G, M perpendicular to the planes through BA, AC and ED, DF, and let them meet the planes at L, N, and let LA, ND be joined; I say that the angle GAL is equal to the angle MDN.