Let ABC, DCE be equiangular triangles having the angle ABC equal to the angle DCE, the angle BAC to the angle CDE, and further the angle ACB to the angle CED; I say that in the triangles ABC, DCE the sides about the equal angles are proportional, and those are corresponding sides which subtend the equal angles. For let BC be placed in a straight line with CE. Then, since the angles ABC, ACB are less than two right angles, [I. 17] and the angle ACB is equal to the angle DEC, therefore the angles ABC, DEC are less than two right angles; therefore BA, ED, when produced, will meet. [I. Post. 5] Let them be produced and meet at F. Now, since the angle DCE is equal to the angle ABC,
Let ABC, DCE be equiangular triangles having the angle ABC equal to the angle DCE, the angle BAC to the angle CDE, and further the angle ACB to the angle CED; I say that in the triangles ABC, DCE the sides about the equal angles are proportional, and those are corresponding sides which subtend the equal angles. For let BC be placed in a straight line with CE. Then, since the angles ABC, ACB are less than two right angles, [I. 17] and the angle ACB is equal to the angle DEC, therefore the angles ABC, DEC are less than two right angles; therefore BA, ED, when produced, will meet. [I. Post. 5] Let them be produced and meet at F. Now, since the angle DCE is equal to the angle ABC,
This work is licensed under a
Creative Commons Attribution-ShareAlike 3.0 United States License.
An XML version of this text is available for download, with the additional restriction that you offer Perseus any modifications you make. Perseus provides credit for all accepted changes, storing new additions in a versioning system.