previous next


Therefore the solid AE is also equal to the solid CF.

Therefore etc. Q. E. D.


PROPOSITION 32.

Parallelepipedal solids which are of the same height are to one another as their bases.

Let AB, CD be parallelepipedal solids of the same height; I say that the parallelepipedal solids AB, CD are to one another as their bases, that is, that, as the base AE is to the base CF, so is the solid AB to the solid CD.

For let FH equal to AE be applied to FG, [I. 45] and on FH as base, and with the same height as that of CD, let the parallelepipedal solid GK be completed.

Then the solid AB is equal to the solid GK; for they are on equal bases AE, FH and of the same height. [XI. 31]

And, since the parallelepipedal solid CK is cut by the plane DG which is parallel to opposite planes, therefore, as the base CF is to the base FH, so is the solid CD to the solid DH. [XI. 25]

But the base FH is equal to the base AE, and the solid GK to the solid AB; therefore also, as the base AE is to the base CF, so is the solid AB to the solid CD.

Therefore etc. Q. E. D.


PROPOSITION 33.

Similar parallelepipedal solids are to one another in the triplicate ratio of their corresponding sides.

Let AB, CD be similar parallelepipedal solids, and let AE be the side corresponding to CF; I say that the solid AB has to the solid CD the ratio triplicate of that which AE has to CF.

For let EK, EL, EM be produced in a straight line with AE, GE, HE, let EK be made equal to CF, EL equal to FN, and further EM equal to FR, and let the parallelogram KL and the solid KP be completed.

Now, since the two sides KE, EL are equal to the two sides CF, FN, while the angle KEL is also equal to the angle CFN, inasmuch as the angle AEG is also equal to the angle CFN because of the similarity of the solids AB, CD,

Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 3.0 United States License.

An XML version of this text is available for download, with the additional restriction that you offer Perseus any modifications you make. Perseus provides credit for all accepted changes, storing new additions in a versioning system.

hide Display Preferences
Greek Display:
Arabic Display:
View by Default:
Browse Bar: