previous next


PROPOSITION 90.

To find the sixth apotome.

Let a rational straight line A be set out, and three numbers E, BC, CD not having to one another the ratio which a square number has to a square number; and further let CB also not have to BD the ratio which a square number has to a square number.

Let it be contrived that, as E is to BC, so is the square on A to the square on FG, and, as BC is to CD, so is the square on FG to the square on GH. [X. 6, Por.]

Now since, as E is to BC, so is the square on A to the square on FG, therefore the square on A is commensurable with the square on FG. [X. 6]

But the square on A is rational; therefore the square on FG is also rational; therefore FG is also rational.

And, since E has not to BC the ratio which a square number has to a square number, therefore neither has the square on A to the square on FG the ratio which a square number has to a square number; therefore A is incommensurable in length with FG. [X. 9]

Again, since, as BC is to CD, so is the square on FG to the square on GH, therefore the square on FG is commensurable with the square on GH. [X. 6]

But the square on FG is rational; therefore the square on GH is also rational; therefore GH is also rational.

And, since BC has not to CD the ratio which a square number has to a square number,

Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 3.0 United States License.

An XML version of this text is available for download, with the additional restriction that you offer Perseus any modifications you make. Perseus provides credit for all accepted changes, storing new additions in a versioning system.

hide Display Preferences
Greek Display:
Arabic Display:
View by Default:
Browse Bar: